Ngit's picture
add ONNXRuntime tag
4fea72b verified
---
datasets:
- go_emotions
language:
- en
library_name: transformers
inference: false
model-index:
- name: text-classification-goemotions
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: go_emotions
type: multilabel_classification
config: simplified
split: test
args: simplified
metrics:
- name: F1
type: f1
value: 0.482
license: apache-2.0
tags:
- emotions
- multi-class-classification
- multi-label-classification
- onnx
- int8
- emotion
- ONNXRuntime
---
# Text Classification GoEmotions
This a ONNX quantized model and is fined-tuned version of [MiniLMv2-L6-H384](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large) on the on the [go_emotions](https://huggingface.co/datasets/go_emotions) dataset using [tasinho/text-classification-goemotions](https://huggingface.co/tasinhoque/text-classification-goemotions) as teacher model.
The original model can be found [here](https://huggingface.co/minuva/MiniLMv2-goemotions-v2)
# Optimum
## Installation
Install from source:
```bash
python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git
```
## Run the Model
```py
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import AutoTokenizer, pipeline
model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-goemotions-v2-onnx', provider="CPUExecutionProvider")
tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-goemotions-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length')
pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, )
texts = ["that's wrong", "can you please answer me?"]
pipe(texts)
# [{'label': 'anger', 'score': 0.9727636575698853},
# {'label': 'love', 'score': 0.9874765276908875}]
```
# ONNX Runtime only
A lighter solution for deployment
## Installation
```bash
pip install tokenizers
pip install onnxruntime
git clone https://huggingface.co/minuva/MiniLMv2-goemotions-v2-onnx
```
## Run the Model
```py
import os
import numpy as np
import json
from tokenizers import Tokenizer
from onnxruntime import InferenceSession
model_name = "minuva/MiniLMv2-goemotions-v2-onnx"
tokenizer = Tokenizer.from_pretrained(model_name)
tokenizer.enable_padding(
pad_token="<pad>",
pad_id=1,
)
tokenizer.enable_truncation(max_length=256)
batch_size = 16
texts = ["I am angry", "I feel in love"]
outputs = []
model = InferenceSession("MiniLMv2-goemotions-v2-onnx/model_optimized_quantized.onnx", providers=['CUDAExecutionProvider'])
with open(os.path.join("MiniLMv2-goemotions-v2-onnx", "config.json"), "r") as f:
config = json.load(f)
output_names = [output.name for output in model.get_outputs()]
input_names = [input.name for input in model.get_inputs()]
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
encodings = tokenizer.encode_batch(list(subtexts))
inputs = {
"input_ids": np.vstack(
[encoding.ids for encoding in encodings],
),
"attention_mask": np.vstack(
[encoding.attention_mask for encoding in encodings],
),
"token_type_ids": np.vstack(
[encoding.type_ids for encoding in encodings],
),
}
for input_name in input_names:
if input_name not in inputs:
raise ValueError(f"Input name {input_name} not found in inputs")
inputs = {input_name: inputs[input_name] for input_name in input_names}
output = np.squeeze(
np.stack(
model.run(output_names=output_names, input_feed=inputs)
),
axis=0,
)
outputs.append(output)
outputs = np.concatenate(outputs, axis=0)
scores = 1 / (1 + np.exp(-outputs))
results = []
for item in scores:
labels = []
scores = []
for idx, s in enumerate(item):
labels.append(config["id2label"][str(idx)])
scores.append(float(s))
results.append({"labels": labels, "scores": scores})
res = []
for result in results:
joined = list(zip(result['labels'], result['scores']))
max_score = max(joined, key=lambda x: x[1])
res.append(max_score)
res
# [('anger', 0.9745745062828064), ('love', 0.9884329438209534)]
```
# Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
# Metrics (comparison with teacher model)
| Teacher (params) | Student (params) | Set | Score (teacher) | Score (student) |
|--------------------|-------------|----------|--------| --------|
| tasinhoque/text-classification-goemotions (355M) | MiniLMv2-goemotions-v2-onnx (30M) | Validation | 0.514252 | 0.4780 |
| tasinhoque/text-classification-goemotions (335M) | MiniLMv2-goemotions-v2-onnx (30M) | Test | 0.501937 | 0.482 |
# Deployment
Check out our [fast-nlp-text-emotion repository](https://github.com/minuva/fast-nlp-text-emotion) for a FastAPI based server to easily deploy this model on CPU devices.