Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: chinese-alpaca-plus-33b-merged
|
3 |
+
emoji: 📚
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.23.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
---
|
11 |
+
|
12 |
+
加入中文词表并继续预训练中文Embedding,并在此基础上继续使用指令数据集finetuning,得到的中文Alpaca-plus-33B模型。
|
13 |
+
|
14 |
+
模型转换用到的相关base及lora模型如下:
|
15 |
+
- base-model: elinas/llama-30b-hf-transformers-4.29
|
16 |
+
- lora-model: ziqingyang/chinese-llama-plus-lora-7b, ziqingyang/chinese-alpaca-plus-lora-33b
|
17 |
+
|
18 |
+
详情可参考:https://github.com/ymcui/Chinese-LLaMA-Alpaca/releases/tag/v5.0
|
19 |
+
|
20 |
+
|
21 |
+
### 使用方法参考
|
22 |
+
1. 安装模块包
|
23 |
+
```bash
|
24 |
+
pip install sentencepiece
|
25 |
+
pip install transformers>=4.28.0
|
26 |
+
```
|
27 |
+
|
28 |
+
2. 生成文本
|
29 |
+
```python
|
30 |
+
import torch
|
31 |
+
import transformers
|
32 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
33 |
+
|
34 |
+
def generate_prompt(text):
|
35 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
36 |
+
|
37 |
+
### Instruction:
|
38 |
+
{text}
|
39 |
+
|
40 |
+
### Response:"""
|
41 |
+
|
42 |
+
|
43 |
+
tokenizer = LlamaTokenizer.from_pretrained('minlik/chinese-alpaca-plus-33b-merged')
|
44 |
+
model = LlamaForCausalLM.from_pretrained('minlik/chinese-alpaca-plus-33b-merged').half().to('cuda')
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
text = '第一个登上月球的人是谁?'
|
48 |
+
prompt = generate_prompt(text)
|
49 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')
|
50 |
+
|
51 |
+
|
52 |
+
with torch.no_grad():
|
53 |
+
output_ids = model.generate(
|
54 |
+
input_ids=input_ids,
|
55 |
+
max_new_tokens=128,
|
56 |
+
temperature=1,
|
57 |
+
top_k=40,
|
58 |
+
top_p=0.9,
|
59 |
+
repetition_penalty=1.15
|
60 |
+
).cuda()
|
61 |
+
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
62 |
+
print(output.replace(prompt, '').strip())
|
63 |
+
```
|