|
--- |
|
base_model: klue/roberta-base |
|
library_name: setfit |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 트위저맨 클래식 래쉬 컬러 스튜디오 컬렉션 160543 (#M)SSG.COM/메이크업/베이스메이크업/메이크업베이스 ssg > 뷰티 > |
|
메이크업 > 베이스메이크업 > 메이크업베이스 |
|
- text: 더툴랩 더스타일래쉬 4종리얼/내츄럴/볼륨/맥스 중 택1 003 볼륨 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > |
|
브로우관리 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 브로우관리 |
|
- text: Tweezerman 클래식 아이래쉬 컬러 속눈썹 뷰러 (#M)화장품/미용>뷰티소품>아이소품>눈썹칼 Naverstore > 화장품/미용 |
|
> 뷰티소품 > 아이소품 > 눈썹칼 |
|
- text: 에뛰드하우스 [에뛰드 추가쿠폰] 마이뷰티툴 속눈썹 3호 캣 아이 (#M)GSSHOP>뷰티>베이스메이크업>메이크업베이스 GSSHOP > |
|
뷰티 > 베이스메이크업 > 메이크업베이스 |
|
- text: 미샤 시크릿 래쉬 - 1호 디어 (#M)홈>화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제 Naverstore > 화장품/미용 > |
|
뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제 |
|
inference: true |
|
model-index: |
|
- name: SetFit with klue/roberta-base |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.9622489959839358 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with klue/roberta-base |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 5 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 5 | <ul><li>'[에뛰드] 마이뷰티툴 속눈썹 1ea 5호 홈>화장소품;홈>TOOL;(#M)홈>배송비 절약템 🛒 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'더툴랩 더 스타일 래쉬 볼륨 TSL003 블랙 × 45개 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>속눈썹관리 소품 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 속눈썹관리 소품'</li><li>'더툴랩 해피림 아이래쉬 내추럴 가닥속눈썹 1pack 11.5N (#M)화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li></ul> | |
|
| 1 | <ul><li>'트위저맨 Tweezerman 스테인리스 브로우 쉐이핑 가위 및 브러시 521626 (#M)홈>화장품/미용>뷰티소품>헤어소품>미용가위 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 미용가위'</li><li>'트위저맨 스테인리스 브로우 셰이핑 시져 브러쉬 70238 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 베이스/프라이머 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 베이스/프라이머'</li><li>'트위저맨 스테인리스 브로우 셰이핑 시져 브러쉬 70238 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션 ssg > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션'</li></ul> | |
|
| 0 | <ul><li>'피카소 속눈썹 빗 피카소 속눈썹 빗 (#M)홈>미용소품>기타소품>기타미용소품 OLIVEYOUNG > 미용소품 > 기타소품 > 기타미용소품'</li><li>'트위저맨 프로페셔널 폴딩 아이래쉬콤브 1개 (#M)쿠팡 홈>뷰티>뷰티소품>페이스소품>브러쉬 Coupang > 뷰티 > 뷰티소품 > 페이스소품 > 브러쉬'</li><li>'속눈썹롯드 속눈썹펌롯드 L컬(SHARP) (#M)홈>화장품/미용>뷰티소품>아이소품>기타아이소품 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 기타아이소품'</li></ul> | |
|
| 3 | <ul><li>'[Tweezerman] 트위저맨 클래식 속눈썹 뷰러 로즈 골드 1개입 (#M)홈>화장품/미용>뷰티소품>메이크업브러시>브러시세트 Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 브러시세트'</li><li>'[에뛰드] 마이 뷰티툴 뷰러 (1EA) (#M)홈>TOOL Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 뷰러'</li><li>'시세이도 213뷰러 전체뷰러 속눈썹 고데기+뷰러리필 LotteOn > 뷰티 > 뷰티소품 > 아이소품 LotteOn > 뷰티 > 뷰티기기/소품 > 아이/브로우소품 > 속눈썹관리'</li></ul> | |
|
| 4 | <ul><li>'e.l.f. 듀얼 펜슬 샤프너 10세트 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li><li>'e.l.f. 듀얼 펜슬 샤프너 혼합 색상 × 6개입 (#M)쿠팡 홈>뷰티>뷰티소품>아이소품>족집게/샤프너 Coupang > 뷰티 > 뷰티소품 > 아이소품 > 족집게/샤프너'</li><li>'[맥]펜슬 샤프너 (#M)홈>화장품/미용>뷰티소품>아이소품>샤프너 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 샤프너'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.9622 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt6_3") |
|
# Run inference |
|
preds = model("Tweezerman 클래식 아이래쉬 컬러 속눈썹 뷰러 (#M)화장품/미용>뷰티소품>아이소품>눈썹칼 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 눈썹칼") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 13 | 20.7017 | 46 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 9 | |
|
| 3 | 50 | |
|
| 4 | 22 | |
|
| 5 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (64, 64) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 100 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0035 | 1 | 0.4788 | - | |
|
| 0.1767 | 50 | 0.4758 | - | |
|
| 0.3534 | 100 | 0.4629 | - | |
|
| 0.5300 | 150 | 0.3827 | - | |
|
| 0.7067 | 200 | 0.2023 | - | |
|
| 0.8834 | 250 | 0.0454 | - | |
|
| 1.0601 | 300 | 0.0031 | - | |
|
| 1.2367 | 350 | 0.0001 | - | |
|
| 1.4134 | 400 | 0.0001 | - | |
|
| 1.5901 | 450 | 0.0 | - | |
|
| 1.7668 | 500 | 0.0 | - | |
|
| 1.9435 | 550 | 0.0001 | - | |
|
| 2.1201 | 600 | 0.0 | - | |
|
| 2.2968 | 650 | 0.0 | - | |
|
| 2.4735 | 700 | 0.0 | - | |
|
| 2.6502 | 750 | 0.0 | - | |
|
| 2.8269 | 800 | 0.0 | - | |
|
| 3.0035 | 850 | 0.0 | - | |
|
| 3.1802 | 900 | 0.0 | - | |
|
| 3.3569 | 950 | 0.0 | - | |
|
| 3.5336 | 1000 | 0.0 | - | |
|
| 3.7102 | 1050 | 0.0 | - | |
|
| 3.8869 | 1100 | 0.0 | - | |
|
| 4.0636 | 1150 | 0.0 | - | |
|
| 4.2403 | 1200 | 0.0 | - | |
|
| 4.4170 | 1250 | 0.0001 | - | |
|
| 4.5936 | 1300 | 0.0012 | - | |
|
| 4.7703 | 1350 | 0.0006 | - | |
|
| 4.9470 | 1400 | 0.0 | - | |
|
| 5.1237 | 1450 | 0.0 | - | |
|
| 5.3004 | 1500 | 0.0 | - | |
|
| 5.4770 | 1550 | 0.0 | - | |
|
| 5.6537 | 1600 | 0.0 | - | |
|
| 5.8304 | 1650 | 0.0 | - | |
|
| 6.0071 | 1700 | 0.0 | - | |
|
| 6.1837 | 1750 | 0.0 | - | |
|
| 6.3604 | 1800 | 0.0 | - | |
|
| 6.5371 | 1850 | 0.0 | - | |
|
| 6.7138 | 1900 | 0.0 | - | |
|
| 6.8905 | 1950 | 0.0 | - | |
|
| 7.0671 | 2000 | 0.0 | - | |
|
| 7.2438 | 2050 | 0.0 | - | |
|
| 7.4205 | 2100 | 0.0 | - | |
|
| 7.5972 | 2150 | 0.0 | - | |
|
| 7.7739 | 2200 | 0.0 | - | |
|
| 7.9505 | 2250 | 0.0 | - | |
|
| 8.1272 | 2300 | 0.0 | - | |
|
| 8.3039 | 2350 | 0.0 | - | |
|
| 8.4806 | 2400 | 0.0 | - | |
|
| 8.6572 | 2450 | 0.0 | - | |
|
| 8.8339 | 2500 | 0.0 | - | |
|
| 9.0106 | 2550 | 0.0 | - | |
|
| 9.1873 | 2600 | 0.0 | - | |
|
| 9.3640 | 2650 | 0.0 | - | |
|
| 9.5406 | 2700 | 0.0 | - | |
|
| 9.7173 | 2750 | 0.0 | - | |
|
| 9.8940 | 2800 | 0.0 | - | |
|
| 10.0707 | 2850 | 0.0 | - | |
|
| 10.2473 | 2900 | 0.0 | - | |
|
| 10.4240 | 2950 | 0.0 | - | |
|
| 10.6007 | 3000 | 0.0 | - | |
|
| 10.7774 | 3050 | 0.0 | - | |
|
| 10.9541 | 3100 | 0.0 | - | |
|
| 11.1307 | 3150 | 0.0 | - | |
|
| 11.3074 | 3200 | 0.0 | - | |
|
| 11.4841 | 3250 | 0.0 | - | |
|
| 11.6608 | 3300 | 0.0 | - | |
|
| 11.8375 | 3350 | 0.0 | - | |
|
| 12.0141 | 3400 | 0.0 | - | |
|
| 12.1908 | 3450 | 0.0 | - | |
|
| 12.3675 | 3500 | 0.0 | - | |
|
| 12.5442 | 3550 | 0.0 | - | |
|
| 12.7208 | 3600 | 0.0 | - | |
|
| 12.8975 | 3650 | 0.0 | - | |
|
| 13.0742 | 3700 | 0.0 | - | |
|
| 13.2509 | 3750 | 0.0 | - | |
|
| 13.4276 | 3800 | 0.0 | - | |
|
| 13.6042 | 3850 | 0.0 | - | |
|
| 13.7809 | 3900 | 0.0 | - | |
|
| 13.9576 | 3950 | 0.0 | - | |
|
| 14.1343 | 4000 | 0.0 | - | |
|
| 14.3110 | 4050 | 0.0 | - | |
|
| 14.4876 | 4100 | 0.0 | - | |
|
| 14.6643 | 4150 | 0.0 | - | |
|
| 14.8410 | 4200 | 0.0 | - | |
|
| 15.0177 | 4250 | 0.0 | - | |
|
| 15.1943 | 4300 | 0.0 | - | |
|
| 15.3710 | 4350 | 0.0 | - | |
|
| 15.5477 | 4400 | 0.0 | - | |
|
| 15.7244 | 4450 | 0.0 | - | |
|
| 15.9011 | 4500 | 0.0 | - | |
|
| 16.0777 | 4550 | 0.0 | - | |
|
| 16.2544 | 4600 | 0.0 | - | |
|
| 16.4311 | 4650 | 0.0 | - | |
|
| 16.6078 | 4700 | 0.0 | - | |
|
| 16.7845 | 4750 | 0.0 | - | |
|
| 16.9611 | 4800 | 0.0 | - | |
|
| 17.1378 | 4850 | 0.0 | - | |
|
| 17.3145 | 4900 | 0.0 | - | |
|
| 17.4912 | 4950 | 0.0 | - | |
|
| 17.6678 | 5000 | 0.0 | - | |
|
| 17.8445 | 5050 | 0.0 | - | |
|
| 18.0212 | 5100 | 0.0 | - | |
|
| 18.1979 | 5150 | 0.0 | - | |
|
| 18.3746 | 5200 | 0.0 | - | |
|
| 18.5512 | 5250 | 0.0 | - | |
|
| 18.7279 | 5300 | 0.0 | - | |
|
| 18.9046 | 5350 | 0.0 | - | |
|
| 19.0813 | 5400 | 0.0 | - | |
|
| 19.2580 | 5450 | 0.0 | - | |
|
| 19.4346 | 5500 | 0.0 | - | |
|
| 19.6113 | 5550 | 0.0 | - | |
|
| 19.7880 | 5600 | 0.0 | - | |
|
| 19.9647 | 5650 | 0.0 | - | |
|
| 20.1413 | 5700 | 0.0 | - | |
|
| 20.3180 | 5750 | 0.0 | - | |
|
| 20.4947 | 5800 | 0.0 | - | |
|
| 20.6714 | 5850 | 0.0 | - | |
|
| 20.8481 | 5900 | 0.0 | - | |
|
| 21.0247 | 5950 | 0.0 | - | |
|
| 21.2014 | 6000 | 0.0 | - | |
|
| 21.3781 | 6050 | 0.0 | - | |
|
| 21.5548 | 6100 | 0.0 | - | |
|
| 21.7314 | 6150 | 0.0 | - | |
|
| 21.9081 | 6200 | 0.0 | - | |
|
| 22.0848 | 6250 | 0.0 | - | |
|
| 22.2615 | 6300 | 0.0 | - | |
|
| 22.4382 | 6350 | 0.0 | - | |
|
| 22.6148 | 6400 | 0.0 | - | |
|
| 22.7915 | 6450 | 0.0 | - | |
|
| 22.9682 | 6500 | 0.0 | - | |
|
| 23.1449 | 6550 | 0.0 | - | |
|
| 23.3216 | 6600 | 0.0 | - | |
|
| 23.4982 | 6650 | 0.0 | - | |
|
| 23.6749 | 6700 | 0.0 | - | |
|
| 23.8516 | 6750 | 0.0 | - | |
|
| 24.0283 | 6800 | 0.0 | - | |
|
| 24.2049 | 6850 | 0.0 | - | |
|
| 24.3816 | 6900 | 0.0 | - | |
|
| 24.5583 | 6950 | 0.0 | - | |
|
| 24.7350 | 7000 | 0.0 | - | |
|
| 24.9117 | 7050 | 0.0 | - | |
|
| 25.0883 | 7100 | 0.0 | - | |
|
| 25.2650 | 7150 | 0.0 | - | |
|
| 25.4417 | 7200 | 0.0 | - | |
|
| 25.6184 | 7250 | 0.0 | - | |
|
| 25.7951 | 7300 | 0.0 | - | |
|
| 25.9717 | 7350 | 0.0 | - | |
|
| 26.1484 | 7400 | 0.0 | - | |
|
| 26.3251 | 7450 | 0.0 | - | |
|
| 26.5018 | 7500 | 0.0 | - | |
|
| 26.6784 | 7550 | 0.0 | - | |
|
| 26.8551 | 7600 | 0.0 | - | |
|
| 27.0318 | 7650 | 0.0 | - | |
|
| 27.2085 | 7700 | 0.0 | - | |
|
| 27.3852 | 7750 | 0.0 | - | |
|
| 27.5618 | 7800 | 0.0 | - | |
|
| 27.7385 | 7850 | 0.0 | - | |
|
| 27.9152 | 7900 | 0.0 | - | |
|
| 28.0919 | 7950 | 0.0 | - | |
|
| 28.2686 | 8000 | 0.0 | - | |
|
| 28.4452 | 8050 | 0.0 | - | |
|
| 28.6219 | 8100 | 0.0 | - | |
|
| 28.7986 | 8150 | 0.0 | - | |
|
| 28.9753 | 8200 | 0.0 | - | |
|
| 29.1519 | 8250 | 0.0 | - | |
|
| 29.3286 | 8300 | 0.0 | - | |
|
| 29.5053 | 8350 | 0.0 | - | |
|
| 29.6820 | 8400 | 0.0 | - | |
|
| 29.8587 | 8450 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |