master_cate_lh24 / README.md
mini1013's picture
Push model using huggingface_hub.
e3b48a5 verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 건식좌훈기 무연  엉덩이  가정용 훈증 의자 찜질 대나무 세트 2 구대미르2
  - text: 좌훈 좌욕 치마 남녀 공용 까운 훈증욕 사우나 각탕 찜질 가운 01.모자 더블 브라켓 레드 히어유통
  - text: 반신욕 가운 좌훈 사우나 목욕탕 찜질 땀복 좌욕 치마 5. 블루 커버 컬러몰
  - text: 가정용 좌훈기 좌훈 의자  습식 건식 좌욕기 등받이 (습건식+삼창+게르마늄석) 골드 원픽파트너
  - text:  좌훈방 찜질 건식 좌훈기 온열 쑥좌욕 좌훈 좌욕 쑥뜸 여성 연기필터온도조절+108개아이주+4종세트 스누보
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.9881376037959668
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '매직솔트 천목도자기 좌훈기 매직솔트'
  • '냄새제거 해충기피 좌훈 강화약쑥 태우는쑥 2봉 이즈데어'
  • '가정용 원목 좌훈기 족욕기 혈액순환 찜질 좌욕 훈증 70 높이 W포트 찜통 E 아르랩'
0.0
  • '접이식 가정용 좌욕기 임산부 치질 온욕 폴딩 대야 수동 비데 접이식 가정용좌욕기 그레이 데일리마켓'
  • 'OK 소프트 좌욕대야 좌욕기 임산부 가정용 좌욕 1_핑크 메디칼유'
  • '닥터프리 버블 가정용 좌욕기 쑥 치질 임산부 대야 A.고급 천연 약쑥 30포 주식회사 다니고'

Evaluation

Metrics

Label Metric
all 0.9881

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh24")
# Run inference
preds = model("반신욕 가운 좌훈 사우나 목욕탕 찜질 땀복 좌욕 치마 5. 블루 커버 컬러몰")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 10.8 22
Label Training Sample Count
0.0 50
1.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0625 1 0.4245 -
3.125 50 0.0003 -
6.25 100 0.0 -
9.375 150 0.0 -
12.5 200 0.0 -
15.625 250 0.0 -
18.75 300 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}