master_cate_lh23 / README.md
mini1013's picture
Push model using huggingface_hub.
17f0068 verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: 천주교 세례명각인 5 매듭묵주팔찌 이레네오 라일락_어린이 루아(RUAH)
  - text: 손가락염주 불교 단주 미니 염주 합장주 악세사리 108 108 선택4.라일락 스테디오더
  - text: 손가락염주 벽조목 미니염주 건강 불교용품 경면주사 V 이커머스히어로
  - text: 손가락염주 벽조목 미니염주 건강 불교용품 경면주사 E 이커머스히어로
  - text: 제사 불전 부처님 신당 제단 법당 향로 그릇 향받침대 클리어런스퍼니스스타일랜덤헤어1 복실이총각
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.8396946564885496
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '태국침향 티베트 인센스 디퓨저 천연 향초 향로 24개 트러스트(trust)쇼핑몰'
  • '엘캔들x보리심양초 밀대 원백 돈타래 쌍대 1박스 돈타래 1박스 40개입 엘캔들'
  • '수인당천무 소원부적 스티커 13종 관재구설부 도깨비몰'
2.0
  • '가톨릭 성화 성인 원형 성수병 30ml 주문제작 메리블라썸'
  • '티베트 야크 본 비즈 108 말라 묵주 기도문 목걸이 10mm white 뮤니샵'
  • '과달루페 성모상 팔찌 목걸이 마리아 가톨릭 실버 스털링 엠에스(MS)쇼핑'
0.0
  • '주문제작- 어린이 전도지 (명함9x5초청장)-500장 1번_1000 자라나는 씨'
  • '입교증서 우단증서 A5 KJ 상장케이스 상장용지 교회용품 부광'
  • '주문제작- 어린이 전도지 (명함9x5초청장)-500장 3번-하늘색_500 자라나는 씨'

Evaluation

Metrics

Label Metric
all 0.8397

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh23")
# Run inference
preds = model("손가락염주 벽조목 미니염주 건강 불교용품 경면주사 V 이커머스히어로")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.3867 22
Label Training Sample Count
0.0 50
1.0 50
2.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0417 1 0.4271 -
2.0833 50 0.029 -
4.1667 100 0.0007 -
6.25 150 0.0002 -
8.3333 200 0.0001 -
10.4167 250 0.0001 -
12.5 300 0.0 -
14.5833 350 0.0 -
16.6667 400 0.0 -
18.75 450 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}