|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: LG전자 올레드 TV OLED55C2FNA 스탠드 윤성 운송료상이 윤성종합가전 |
|
- text: '[엡손] EH-LS500W / 4K UHD 4000안시 2,500,000:1 EPSON 빔 프로젝터 초단초점 (주)메리트정보' |
|
- text: 루컴즈 2024년형 50인치 스마트 UHD 구글 TV 4K 에너지효율 1등급 T5003KUG 스탠드 빌리어네어디 |
|
- text: 이노스 S8601KU LG 패널 스마트 TV 구글티비 벽걸이 기사방문설치(브라켓별도)_수도권(서울경기인천)_86인치 QLED 구글TV |
|
(주)티지디지털 |
|
- text: 삼성 WMN4070SG 벽결이브라켓 삼성고정브라켓 두루엠에스 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.763001415762152 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 7 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 6 | <ul><li>'윤씨네 J-SV / 족자스크린 4:3비율 100인치 에스앤피'</li><li>'[ FLAT FLOW ] 플랏플로우 100인치 와이드 분리형 족자스크린 F-HJ100W F-HJ100W (100인치 와이드 족자형) 아이티원'</li><li>'윤씨네 J-SH40 / 와이드 족자스크린 16:9 40인치 에스앤피'</li></ul> | |
|
| 2 | <ul><li>'75인치 189cm 4K UHD 비즈니스TV LH75BECH 스탠드 에너지효율등급 1등급 우수한 내구성 주식회사 쇼핑하는니체'</li><li>'[LG] 55인치 UHD 단독형 사이니지 3시리즈 (55UL3J) 고정형 벽걸이 설치 주식회사 케이엠시스템'</li><li>'[LG] 55인치 비디오월 슬림 베젤 1.74 mm, 500nit (55VM5J) 벽걸이 설치 (별도문의) 주식회사 케이엠시스템'</li></ul> | |
|
| 5 | <ul><li>'벤큐 GS50 풀HD 캠핑용 빔프로젝터 안드로이드 아이폰 무선미러링 배터리내장 블루투스 (주)아솔컴퍼니'</li><li>'에이서 DX227 🧡정품 신형🧡 5200안시 XGA 20000:1 DLP 회의용 교육용 강당용 멀티용 도움에이브이'</li><li>'[피제이시스] 엡손 EB-L1070U 레이저프로젝터 ❤️정품새상품 ❤️ 주식회사 피제이시스(PJSYS.co.Ltd.)'</li></ul> | |
|
| 0 | <ul><li>'이노스 S2401KU 어반스톡'</li><li>'[무결점] 프리즘 바이런 75인치 1등급 4K HDR 베젤리스TV 패널 2년 무상보증 / BR750UD_기사설치포함 (주)프리즘코리아'</li><li>'[무결점] 프리즘 바이런 55인치 1등급 4K HDR 베젤리스TV 패널 2년 무상보증 / BR550UHD (주)프리즘코리아'</li></ul> | |
|
| 4 | <ul><li>'[PICO 국내 공식판매처] PICO NEO3 Enterprise VR (256GB) / 공공기관 및 공공교육기관 전용 주식회사 메타에듀시스'</li><li>'에듀플레이어 EA400 DVD플레이어 CD/DVD리핑 투웨이 블루투스 EA400 (ED404) 주식회사 에듀플레이어'</li><li>'오큘러스 퀘스트2 Oculus Quest2 올인원 VR게임헤드셋 퀘스트2 128GB (관세 대납) 팽마켓'</li></ul> | |
|
| 1 | <ul><li>'카멜 디지털액자화이트(블랙) / PF1040IPS /10인치 디지털액자(동영상,슬리이드쇼,앨범) 선물용디지털액자PF-1040IPS / 디지털사진액자/ 16:9화면(화이트or 블랙) 블랙 에스라B2B'</li><li>'컴스마트 BM170 15.4형 스마트 디지털 액자 동영상 시계 달력 HDMI 서브 모니터 블루시스템쇼핑몰 주식회사'</li><li>'카멜 디지털액자 10인치 PF-1040IPS 미니모니터 사진 동영상 음악 에스제이인터내셔널'</li></ul> | |
|
| 3 | <ul><li>'COMBO-2000A (금영 (KY)/ 내셔널 (NATIONAL) / 넥스디지탈 (NEX) /넥슨 (NEXN) /뉴썬인더스트리 엔플러스(NPLUS)/ 다비디스플레이 (DAVI) COMBO-2000A 메카트로주식회사'</li><li>'COMBO-119 /APH13000/AP-H3020/AP-H4000/APH-H2300/AP-HH232N/IAS-T1010/IAS-T810/IAS-T82CA 지에이치스토어'</li><li>'COMBO-2201 (AKB75455603 / AKB75635301 / AKB75635305 / AKB75675304 / akb75675306 / AKB75755301) 메카트로'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.7630 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_el13") |
|
# Run inference |
|
preds = model("삼성 WMN4070SG 벽결이브라켓 삼성고정브라켓 두루엠에스") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 3 | 10.4229 | 25 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 50 | |
|
| 1 | 50 | |
|
| 2 | 50 | |
|
| 3 | 50 | |
|
| 4 | 50 | |
|
| 5 | 50 | |
|
| 6 | 50 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0182 | 1 | 0.4965 | - | |
|
| 0.9091 | 50 | 0.118 | - | |
|
| 1.8182 | 100 | 0.0382 | - | |
|
| 2.7273 | 150 | 0.0008 | - | |
|
| 3.6364 | 200 | 0.0003 | - | |
|
| 4.5455 | 250 | 0.0002 | - | |
|
| 5.4545 | 300 | 0.0002 | - | |
|
| 6.3636 | 350 | 0.0002 | - | |
|
| 7.2727 | 400 | 0.0001 | - | |
|
| 8.1818 | 450 | 0.0001 | - | |
|
| 9.0909 | 500 | 0.0001 | - | |
|
| 10.0 | 550 | 0.0001 | - | |
|
| 10.9091 | 600 | 0.0001 | - | |
|
| 11.8182 | 650 | 0.0001 | - | |
|
| 12.7273 | 700 | 0.0001 | - | |
|
| 13.6364 | 750 | 0.0001 | - | |
|
| 14.5455 | 800 | 0.0001 | - | |
|
| 15.4545 | 850 | 0.0001 | - | |
|
| 16.3636 | 900 | 0.0001 | - | |
|
| 17.2727 | 950 | 0.0001 | - | |
|
| 18.1818 | 1000 | 0.0001 | - | |
|
| 19.0909 | 1050 | 0.0001 | - | |
|
| 20.0 | 1100 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |