metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 스마일뱃지 제작 브로치 다양한 크기 문구 삽입가능 별빛(+300원)_뱃지 중(45mm)_200개~399개 맘스뱃지
- text: 고급 골지압박 타이즈 스타킹 유발 면 겨울 베이지 버징가마켓
- text: 겨울 목도리 여자 남자 캐시미어 니트 쁘띠 울 머플러 1_솜사탕-MS47 에스랑제이
- text: >-
손수건/무지손수건/등산손수건/스카프/등산손수건/두건/KC인증/인쇄가능/개별OPP 무지손수건 [무지손수건] 무지손수건(옐로우)
답돌이월드
- text: 동백꽃 부토니에 머리핀 코사지(K28) K28-06_머리핀 까만당나귀
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8556701030927835
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 20 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
19.0 |
|
18.0 |
|
17.0 |
|
2.0 |
|
12.0 |
|
5.0 |
|
16.0 |
|
11.0 |
|
9.0 |
|
1.0 |
|
8.0 |
|
15.0 |
|
0.0 |
|
6.0 |
|
10.0 |
|
4.0 |
|
13.0 |
|
3.0 |
|
14.0 |
|
7.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.8557 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_ac15")
# Run inference
preds = model("고급 골지압박 타이즈 스타킹 유발 면 겨울 베이지 버징가마켓")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 10.322 | 25 |
Label | Training Sample Count |
---|---|
0.0 | 50 |
1.0 | 50 |
2.0 | 50 |
3.0 | 50 |
4.0 | 50 |
5.0 | 50 |
6.0 | 50 |
7.0 | 50 |
8.0 | 50 |
9.0 | 50 |
10.0 | 50 |
11.0 | 50 |
12.0 | 50 |
13.0 | 50 |
14.0 | 50 |
15.0 | 50 |
16.0 | 50 |
17.0 | 50 |
18.0 | 50 |
19.0 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0064 | 1 | 0.3967 | - |
0.3185 | 50 | 0.3383 | - |
0.6369 | 100 | 0.2365 | - |
0.9554 | 150 | 0.1145 | - |
1.2739 | 200 | 0.0563 | - |
1.5924 | 250 | 0.0414 | - |
1.9108 | 300 | 0.0377 | - |
2.2293 | 350 | 0.0159 | - |
2.5478 | 400 | 0.0297 | - |
2.8662 | 450 | 0.0258 | - |
3.1847 | 500 | 0.0194 | - |
3.5032 | 550 | 0.0113 | - |
3.8217 | 600 | 0.0108 | - |
4.1401 | 650 | 0.0059 | - |
4.4586 | 700 | 0.0009 | - |
4.7771 | 750 | 0.0059 | - |
5.0955 | 800 | 0.0044 | - |
5.4140 | 850 | 0.004 | - |
5.7325 | 900 | 0.0023 | - |
6.0510 | 950 | 0.0004 | - |
6.3694 | 1000 | 0.0024 | - |
6.6879 | 1050 | 0.0007 | - |
7.0064 | 1100 | 0.0004 | - |
7.3248 | 1150 | 0.0002 | - |
7.6433 | 1200 | 0.0002 | - |
7.9618 | 1250 | 0.0003 | - |
8.2803 | 1300 | 0.0002 | - |
8.5987 | 1350 | 0.0001 | - |
8.9172 | 1400 | 0.0001 | - |
9.2357 | 1450 | 0.0001 | - |
9.5541 | 1500 | 0.0001 | - |
9.8726 | 1550 | 0.0001 | - |
10.1911 | 1600 | 0.0001 | - |
10.5096 | 1650 | 0.0001 | - |
10.8280 | 1700 | 0.0001 | - |
11.1465 | 1750 | 0.0001 | - |
11.4650 | 1800 | 0.0001 | - |
11.7834 | 1850 | 0.0001 | - |
12.1019 | 1900 | 0.0001 | - |
12.4204 | 1950 | 0.0001 | - |
12.7389 | 2000 | 0.0001 | - |
13.0573 | 2050 | 0.0001 | - |
13.3758 | 2100 | 0.0001 | - |
13.6943 | 2150 | 0.0001 | - |
14.0127 | 2200 | 0.0001 | - |
14.3312 | 2250 | 0.0001 | - |
14.6497 | 2300 | 0.0001 | - |
14.9682 | 2350 | 0.0001 | - |
15.2866 | 2400 | 0.0001 | - |
15.6051 | 2450 | 0.0001 | - |
15.9236 | 2500 | 0.0001 | - |
16.2420 | 2550 | 0.0001 | - |
16.5605 | 2600 | 0.0001 | - |
16.8790 | 2650 | 0.0001 | - |
17.1975 | 2700 | 0.0001 | - |
17.5159 | 2750 | 0.0001 | - |
17.8344 | 2800 | 0.0001 | - |
18.1529 | 2850 | 0.0001 | - |
18.4713 | 2900 | 0.0001 | - |
18.7898 | 2950 | 0.0001 | - |
19.1083 | 3000 | 0.0001 | - |
19.4268 | 3050 | 0.0001 | - |
19.7452 | 3100 | 0.0001 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}