updated
Browse files- merged_distilgpt2/handler.py +39 -33
merged_distilgpt2/handler.py
CHANGED
|
@@ -1,11 +1,13 @@
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import torch
|
|
|
|
| 5 |
|
| 6 |
class EndpointHandler:
|
| 7 |
def __init__(self, path=""):
|
| 8 |
-
self.
|
|
|
|
| 9 |
if self.task == "text-generation":
|
| 10 |
self.model = AutoModelForCausalLM.from_pretrained(path)
|
| 11 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
|
@@ -27,45 +29,49 @@ class EndpointHandler:
|
|
| 27 |
elif self.task == "sentence-embedding":
|
| 28 |
self.model = SentenceTransformer(path)
|
| 29 |
else:
|
| 30 |
-
raise ValueError(f"Unsupported task: {self.task}")
|
| 31 |
|
| 32 |
-
def _determine_task(self
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
"
|
| 37 |
-
"fine_tuned_gpt2",
|
| 38 |
-
"merged_distilgpt2",
|
| 39 |
-
"gpt2"
|
| 40 |
-
]
|
| 41 |
-
text_classification_models = [
|
| 42 |
-
"emotion_classifier",
|
| 43 |
-
"emotion_model",
|
| 44 |
-
"intent_classifier",
|
| 45 |
-
"intent_fallback"
|
| 46 |
-
]
|
| 47 |
-
embedding_models = ["intent_encoder", "sentence_transformer"]
|
| 48 |
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
return "text-generation"
|
| 51 |
-
elif model_name in
|
| 52 |
return "text-classification"
|
| 53 |
-
elif model_name in
|
| 54 |
return "sentence-embedding"
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 58 |
inputs = data.get("inputs", "")
|
| 59 |
if not inputs:
|
| 60 |
return [{"error": "No inputs provided"}]
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from typing import Dict, List, Any
|
| 2 |
+
from transformers import pipeline, AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
import torch
|
| 5 |
+
import os
|
| 6 |
|
| 7 |
class EndpointHandler:
|
| 8 |
def __init__(self, path=""):
|
| 9 |
+
self.path = path
|
| 10 |
+
self.task = self._determine_task()
|
| 11 |
if self.task == "text-generation":
|
| 12 |
self.model = AutoModelForCausalLM.from_pretrained(path)
|
| 13 |
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
|
|
|
| 29 |
elif self.task == "sentence-embedding":
|
| 30 |
self.model = SentenceTransformer(path)
|
| 31 |
else:
|
| 32 |
+
raise ValueError(f"Unsupported task: {self.task} for model at {path}")
|
| 33 |
|
| 34 |
+
def _determine_task(self):
|
| 35 |
+
# Load config to determine model_type
|
| 36 |
+
config_path = os.path.join(self.path, "config.json")
|
| 37 |
+
if not os.path.exists(config_path):
|
| 38 |
+
raise ValueError(f"config.json not found in {self.path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
config = AutoConfig.from_pretrained(self.path)
|
| 41 |
+
model_type = config.model_type if hasattr(config, "model_type") else None
|
| 42 |
+
|
| 43 |
+
# Map model_type or model name to tasks
|
| 44 |
+
text_generation_types = ["gpt2"]
|
| 45 |
+
text_classification_types = ["bert", "distilbert", "roberta"]
|
| 46 |
+
embedding_types = ["bert"] # Sentence-BERT models use bert model_type
|
| 47 |
+
|
| 48 |
+
model_name = self.path.split("/")[-1]
|
| 49 |
+
if model_type in text_generation_types or model_name in ["fine_tuned_gpt2", "merged_distilgpt2"]:
|
| 50 |
return "text-generation"
|
| 51 |
+
elif model_type in text_classification_types or model_name in ["emotion_classifier", "intent_classifier", "intent_fallback"]:
|
| 52 |
return "text-classification"
|
| 53 |
+
elif model_name in ["intent_encoder", "sentence_transformer"] or "sentence_bert_config.json" in os.listdir(self.path):
|
| 54 |
return "sentence-embedding"
|
| 55 |
+
elif model_type in text_classification_types and model_name == "emotion_model":
|
| 56 |
+
# Handle emotion_model, which may be classification or generation
|
| 57 |
+
return "text-classification" # Assume classification; adjust if needed
|
| 58 |
+
raise ValueError(f"Could not determine task for model_type: {model_type}, model_name: {model_name}")
|
| 59 |
|
| 60 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 61 |
inputs = data.get("inputs", "")
|
| 62 |
if not inputs:
|
| 63 |
return [{"error": "No inputs provided"}]
|
| 64 |
|
| 65 |
+
try:
|
| 66 |
+
if self.task == "text-generation":
|
| 67 |
+
result = self.pipeline(inputs, max_length=50, num_return_sequences=1)
|
| 68 |
+
return [{"generated_text": item["generated_text"]} for item in result]
|
| 69 |
+
elif self.task == "text-classification":
|
| 70 |
+
result = self.pipeline(inputs, return_all_scores=True)
|
| 71 |
+
return [{"label": item["label"], "score": item["score"]} for sublist in result for item in sublist]
|
| 72 |
+
elif self.task == "sentence-embedding":
|
| 73 |
+
embeddings = self.model.encode(inputs)
|
| 74 |
+
return [{"embeddings": embeddings.tolist()}]
|
| 75 |
+
return [{"error": f"Unsupported task: {self.task}"}]
|
| 76 |
+
except Exception as e:
|
| 77 |
+
return [{"error": f"Inference failed: {str(e)}"}]
|