metadata
license: apache-2.0
base_model: google/flan-t5-large
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: T5_large_billsum_fine_tune_base_model_3_epoch
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.2489
T5_large_billsum_fine_tune_base_model_3_epoch
This model is a fine-tuned version of google/flan-t5-large on the billsum dataset. It achieves the following results on the evaluation set:
- Loss: 0.9541
- Rouge1: 0.2489
- Rouge2: 0.2083
- Rougel: 0.2424
- Rougelsum: 0.2424
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.1242 | 1.0 | 1895 | 0.9894 | 0.2482 | 0.2063 | 0.2411 | 0.2411 | 19.0 |
1.0324 | 2.0 | 3790 | 0.9594 | 0.2493 | 0.2082 | 0.2426 | 0.2426 | 19.0 |
1.0014 | 3.0 | 5685 | 0.9541 | 0.2489 | 0.2083 | 0.2424 | 0.2424 | 19.0 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.14.1