|
--- |
|
license: mit |
|
language: |
|
- ru |
|
metrics: |
|
- f1 |
|
- roc_auc |
|
- precision |
|
- recall |
|
pipeline_tag: text-classification |
|
tags: |
|
- sentiment-analysis |
|
- multi-class-classification |
|
- sentiment analysis |
|
- rubert |
|
- sentiment |
|
- bert |
|
- tiny |
|
- russian |
|
- multiclass |
|
- classification |
|
datasets: |
|
- sismetanin/rureviews |
|
- RuSentiment |
|
- LinisCrowd2015 |
|
- LinisCrowd2016 |
|
- KaggleRussianNews |
|
--- |
|
|
|
The task is a __multi-class classification__ with the following labels: |
|
|
|
```yaml |
|
0: neutral |
|
1: positive |
|
2: negative |
|
``` |
|
|
|
Label to Russian label: |
|
|
|
```yaml |
|
neutral: нейтральный |
|
positive: позитивный |
|
negative: негативный |
|
``` |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
model = pipeline(model="seara/rubert-tiny2-russian-sentiment") |
|
model("Привет, ты мне нравишься!") |
|
# [{'label': 'positive', 'score': 0.9398769736289978}] |
|
``` |