|
--- |
|
license: mit |
|
base_model: microsoft/speecht5_tts |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: zlm_b128_le5_s8000 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# zlm_b128_le5_s8000 |
|
|
|
This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3566 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 2000 |
|
- training_steps: 8000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 0.4378 | 0.8375 | 500 | 0.3956 | |
|
| 0.4328 | 1.6750 | 1000 | 0.3922 | |
|
| 0.4228 | 2.5126 | 1500 | 0.3871 | |
|
| 0.4179 | 3.3501 | 2000 | 0.3843 | |
|
| 0.409 | 4.1876 | 2500 | 0.3769 | |
|
| 0.41 | 5.0251 | 3000 | 0.3739 | |
|
| 0.4003 | 5.8626 | 3500 | 0.3709 | |
|
| 0.4052 | 6.7002 | 4000 | 0.3680 | |
|
| 0.397 | 7.5377 | 4500 | 0.3636 | |
|
| 0.4007 | 8.3752 | 5000 | 0.3615 | |
|
| 0.4022 | 9.2127 | 5500 | 0.3612 | |
|
| 0.3896 | 10.0503 | 6000 | 0.3601 | |
|
| 0.3911 | 10.8878 | 6500 | 0.3577 | |
|
| 0.3949 | 11.7253 | 7000 | 0.3584 | |
|
| 0.3948 | 12.5628 | 7500 | 0.3568 | |
|
| 0.3877 | 13.4003 | 8000 | 0.3566 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|