|  | --- | 
					
						
						|  | language: | 
					
						
						|  | - en | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # Model Card for UniXcoder-base | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # Model Details | 
					
						
						|  |  | 
					
						
						|  | ## Model Description | 
					
						
						|  | UniXcoder is a unified cross-modal pre-trained model that leverages multimodal data (i.e. code comment and AST) to pretrain code representation. | 
					
						
						|  |  | 
					
						
						|  | - **Developed by:** Microsoft Team | 
					
						
						|  | - **Shared by [Optional]:** Hugging Face | 
					
						
						|  | - **Model type:** Feature Engineering | 
					
						
						|  | - **Language(s) (NLP):** en | 
					
						
						|  | - **License:** Apache-2.0 | 
					
						
						|  | - **Related Models:** | 
					
						
						|  | - **Parent Model:** RoBERTa | 
					
						
						|  | - **Resources for more information:** | 
					
						
						|  | - [Associated Paper](https://arxiv.org/abs/2203.03850) | 
					
						
						|  |  | 
					
						
						|  | # Uses | 
					
						
						|  |  | 
					
						
						|  | ## 1. Dependency | 
					
						
						|  |  | 
					
						
						|  | - pip install torch | 
					
						
						|  | - pip install transformers | 
					
						
						|  |  | 
					
						
						|  | ## 2. Quick Tour | 
					
						
						|  | We implement a class to use UniXcoder and you can follow the code to build UniXcoder. | 
					
						
						|  | You can download the class by | 
					
						
						|  | ```shell | 
					
						
						|  | wget https://raw.githubusercontent.com/microsoft/CodeBERT/master/UniXcoder/unixcoder.py | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | import torch | 
					
						
						|  | from unixcoder import UniXcoder | 
					
						
						|  |  | 
					
						
						|  | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | 
					
						
						|  | model = UniXcoder("microsoft/unixcoder-base") | 
					
						
						|  | model.to(device) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | In the following, we will give zero-shot examples for several tasks under different mode, including **code search (encoder-only)**, **code completion (decoder-only)**, **function name prediction (encoder-decoder)** , **API recommendation (encoder-decoder)**, **code summarization (encoder-decoder)**. | 
					
						
						|  |  | 
					
						
						|  | ## 3. Encoder-only Mode | 
					
						
						|  |  | 
					
						
						|  | For encoder-only mode, we give an example of **code search**. | 
					
						
						|  |  | 
					
						
						|  | ### 1) Code and NL Embeddings | 
					
						
						|  |  | 
					
						
						|  | Here, we give an example to obtain code fragment embedding from CodeBERT. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | # Encode maximum function | 
					
						
						|  | func = "def f(a,b): if a>b: return a else return b" | 
					
						
						|  | tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>") | 
					
						
						|  | source_ids = torch.tensor(tokens_ids).to(device) | 
					
						
						|  | tokens_embeddings,max_func_embedding = model(source_ids) | 
					
						
						|  |  | 
					
						
						|  | # Encode minimum function | 
					
						
						|  | func = "def f(a,b): if a<b: return a else return b" | 
					
						
						|  | tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>") | 
					
						
						|  | source_ids = torch.tensor(tokens_ids).to(device) | 
					
						
						|  | tokens_embeddings,min_func_embedding = model(source_ids) | 
					
						
						|  |  | 
					
						
						|  | # Encode NL | 
					
						
						|  | nl = "return maximum value" | 
					
						
						|  | tokens_ids = model.tokenize([nl],max_length=512,mode="<encoder-only>") | 
					
						
						|  | source_ids = torch.tensor(tokens_ids).to(device) | 
					
						
						|  | tokens_embeddings,nl_embedding = model(source_ids) | 
					
						
						|  |  | 
					
						
						|  | print(max_func_embedding.shape) | 
					
						
						|  | print(max_func_embedding) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | torch.Size([1, 768]) | 
					
						
						|  | tensor([[ 8.6533e-01, -1.9796e+00, -8.6849e-01,  4.2652e-01, -5.3696e-01, | 
					
						
						|  | -1.5521e-01,  5.3770e-01,  3.4199e-01,  3.6305e-01, -3.9391e-01, | 
					
						
						|  | -1.1816e+00,  2.6010e+00, -7.7133e-01,  1.8441e+00,  2.3645e+00, | 
					
						
						|  | ..., | 
					
						
						|  | -2.9188e+00,  1.2555e+00, -1.9953e+00, -1.9795e+00,  1.7279e+00, | 
					
						
						|  | 6.4590e-01, -5.2769e-02,  2.4965e-01,  2.3962e-02,  5.9996e-02, | 
					
						
						|  | 2.5659e+00,  3.6533e+00,  2.0301e+00]], device='cuda:0', | 
					
						
						|  | grad_fn=<DivBackward0>) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### 2) Similarity between code and NL | 
					
						
						|  |  | 
					
						
						|  | Now, we calculate cosine similarity between NL and two functions. Although the difference of two functions is only a operator (```<``` and ```>```), UniXcoder can distinguish them. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | # Normalize embedding | 
					
						
						|  | norm_max_func_embedding = torch.nn.functional.normalize(max_func_embedding, p=2, dim=1) | 
					
						
						|  | norm_min_func_embedding = torch.nn.functional.normalize(min_func_embedding, p=2, dim=1) | 
					
						
						|  | norm_nl_embedding = torch.nn.functional.normalize(nl_embedding, p=2, dim=1) | 
					
						
						|  |  | 
					
						
						|  | max_func_nl_similarity = torch.einsum("ac,bc->ab",norm_max_func_embedding,norm_nl_embedding) | 
					
						
						|  | min_func_nl_similarity = torch.einsum("ac,bc->ab",norm_min_func_embedding,norm_nl_embedding) | 
					
						
						|  |  | 
					
						
						|  | print(max_func_nl_similarity) | 
					
						
						|  | print(min_func_nl_similarity) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | tensor([[0.3002]], device='cuda:0', grad_fn=<ViewBackward>) | 
					
						
						|  | tensor([[0.1881]], device='cuda:0', grad_fn=<ViewBackward>) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## 3. Decoder-only Mode | 
					
						
						|  |  | 
					
						
						|  | For decoder-only mode, we give an example of **code completion**. | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | context = """ | 
					
						
						|  | def f(data,file_path): | 
					
						
						|  | # write json data into file_path in python language | 
					
						
						|  | """ | 
					
						
						|  | tokens_ids = model.tokenize([context],max_length=512,mode="<decoder-only>") | 
					
						
						|  | source_ids = torch.tensor(tokens_ids).to(device) | 
					
						
						|  | prediction_ids = model.generate(source_ids, decoder_only=True, beam_size=3, max_length=128) | 
					
						
						|  | predictions = model.decode(prediction_ids) | 
					
						
						|  | print(context+predictions[0][0]) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | def f(data,file_path): | 
					
						
						|  | # write json data into file_path in python language | 
					
						
						|  | data = json.dumps(data) | 
					
						
						|  | with open(file_path, 'w') as f: | 
					
						
						|  | f.write(data) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## 4. Encoder-Decoder Mode | 
					
						
						|  |  | 
					
						
						|  | For encoder-decoder mode, we give two examples including: **function name prediction**, **API recommendation**, **code summarization**. | 
					
						
						|  |  | 
					
						
						|  | ### 1) **Function Name Prediction** | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | context = """ | 
					
						
						|  | def <mask0>(data,file_path): | 
					
						
						|  | data = json.dumps(data) | 
					
						
						|  | with open(file_path, 'w') as f: | 
					
						
						|  | f.write(data) | 
					
						
						|  | """ | 
					
						
						|  | tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>") | 
					
						
						|  | source_ids = torch.tensor(tokens_ids).to(device) | 
					
						
						|  | prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128) | 
					
						
						|  | predictions = model.decode(prediction_ids) | 
					
						
						|  | print([x.replace("<mask0>","").strip() for x in predictions[0]]) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | ['write_json', 'write_file', 'to_json'] | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### 2) API Recommendation | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | context = """ | 
					
						
						|  | def write_json(data,file_path): | 
					
						
						|  | data = <mask0>(data) | 
					
						
						|  | with open(file_path, 'w') as f: | 
					
						
						|  | f.write(data) | 
					
						
						|  | """ | 
					
						
						|  | tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>") | 
					
						
						|  | source_ids = torch.tensor(tokens_ids).to(device) | 
					
						
						|  | prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128) | 
					
						
						|  | predictions = model.decode(prediction_ids) | 
					
						
						|  | print([x.replace("<mask0>","").strip() for x in predictions[0]]) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | ['json.dumps', 'json.loads', 'str'] | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### 3) Code Summarization | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | context = """ | 
					
						
						|  | # <mask0> | 
					
						
						|  | def write_json(data,file_path): | 
					
						
						|  | data = json.dumps(data) | 
					
						
						|  | with open(file_path, 'w') as f: | 
					
						
						|  | f.write(data) | 
					
						
						|  | """ | 
					
						
						|  | tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>") | 
					
						
						|  | source_ids = torch.tensor(tokens_ids).to(device) | 
					
						
						|  | prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128) | 
					
						
						|  | predictions = model.decode(prediction_ids) | 
					
						
						|  | print([x.replace("<mask0>","").strip() for x in predictions[0]]) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | ['Write JSON to file', 'Write json to file', 'Write a json file'] | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | # Reference | 
					
						
						|  | If you use this code or UniXcoder, please consider citing us. | 
					
						
						|  |  | 
					
						
						|  | <pre><code>@article{guo2022unixcoder, | 
					
						
						|  | title={UniXcoder: Unified Cross-Modal Pre-training for Code Representation}, | 
					
						
						|  | author={Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian}, | 
					
						
						|  | journal={arXiv preprint arXiv:2203.03850}, | 
					
						
						|  | year={2022} | 
					
						
						|  | }</code></pre> | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |