|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model Card for UniXcoder-base |
|
|
|
|
|
|
|
# Model Details |
|
|
|
## Model Description |
|
UniXcoder is a unified cross-modal pre-trained model that leverages multimodal data (i.e. code comment and AST) to pretrain code representation. |
|
|
|
- **Developed by:** Microsoft Team |
|
- **Shared by [Optional]:** Hugging Face |
|
- **Model type:** Feature Engineering |
|
- **Language(s) (NLP):** en |
|
- **License:** Apache-2.0 |
|
- **Related Models:** |
|
- **Parent Model:** RoBERTa |
|
- **Resources for more information:** |
|
- [Associated Paper](https://arxiv.org/abs/2203.03850) |
|
|
|
# Uses |
|
|
|
## 1. Dependency |
|
|
|
- pip install torch |
|
- pip install transformers |
|
|
|
## 2. Quick Tour |
|
We implement a class to use UniXcoder and you can follow the code to build UniXcoder. |
|
You can download the class by |
|
```shell |
|
wget https://raw.githubusercontent.com/microsoft/CodeBERT/master/UniXcoder/unixcoder.py |
|
``` |
|
|
|
```python |
|
import torch |
|
from unixcoder import UniXcoder |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = UniXcoder("microsoft/unixcoder-base") |
|
model.to(device) |
|
``` |
|
|
|
In the following, we will give zero-shot examples for several tasks under different mode, including **code search (encoder-only)**, **code completion (decoder-only)**, **function name prediction (encoder-decoder)** , **API recommendation (encoder-decoder)**, **code summarization (encoder-decoder)**. |
|
|
|
## 3. Encoder-only Mode |
|
|
|
For encoder-only mode, we give an example of **code search**. |
|
|
|
### 1) Code and NL Embeddings |
|
|
|
Here, we give an example to obtain code fragment embedding from CodeBERT. |
|
|
|
```python |
|
# Encode maximum function |
|
func = "def f(a,b): if a>b: return a else return b" |
|
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>") |
|
source_ids = torch.tensor(tokens_ids).to(device) |
|
tokens_embeddings,max_func_embedding = model(source_ids) |
|
|
|
# Encode minimum function |
|
func = "def f(a,b): if a<b: return a else return b" |
|
tokens_ids = model.tokenize([func],max_length=512,mode="<encoder-only>") |
|
source_ids = torch.tensor(tokens_ids).to(device) |
|
tokens_embeddings,min_func_embedding = model(source_ids) |
|
|
|
# Encode NL |
|
nl = "return maximum value" |
|
tokens_ids = model.tokenize([nl],max_length=512,mode="<encoder-only>") |
|
source_ids = torch.tensor(tokens_ids).to(device) |
|
tokens_embeddings,nl_embedding = model(source_ids) |
|
|
|
print(max_func_embedding.shape) |
|
print(max_func_embedding) |
|
``` |
|
|
|
```python |
|
torch.Size([1, 768]) |
|
tensor([[ 8.6533e-01, -1.9796e+00, -8.6849e-01, 4.2652e-01, -5.3696e-01, |
|
-1.5521e-01, 5.3770e-01, 3.4199e-01, 3.6305e-01, -3.9391e-01, |
|
-1.1816e+00, 2.6010e+00, -7.7133e-01, 1.8441e+00, 2.3645e+00, |
|
..., |
|
-2.9188e+00, 1.2555e+00, -1.9953e+00, -1.9795e+00, 1.7279e+00, |
|
6.4590e-01, -5.2769e-02, 2.4965e-01, 2.3962e-02, 5.9996e-02, |
|
2.5659e+00, 3.6533e+00, 2.0301e+00]], device='cuda:0', |
|
grad_fn=<DivBackward0>) |
|
``` |
|
|
|
### 2) Similarity between code and NL |
|
|
|
Now, we calculate cosine similarity between NL and two functions. Although the difference of two functions is only a operator (```<``` and ```>```), UniXcoder can distinguish them. |
|
|
|
```python |
|
# Normalize embedding |
|
norm_max_func_embedding = torch.nn.functional.normalize(max_func_embedding, p=2, dim=1) |
|
norm_min_func_embedding = torch.nn.functional.normalize(min_func_embedding, p=2, dim=1) |
|
norm_nl_embedding = torch.nn.functional.normalize(nl_embedding, p=2, dim=1) |
|
|
|
max_func_nl_similarity = torch.einsum("ac,bc->ab",norm_max_func_embedding,norm_nl_embedding) |
|
min_func_nl_similarity = torch.einsum("ac,bc->ab",norm_min_func_embedding,norm_nl_embedding) |
|
|
|
print(max_func_nl_similarity) |
|
print(min_func_nl_similarity) |
|
``` |
|
|
|
```python |
|
tensor([[0.3002]], device='cuda:0', grad_fn=<ViewBackward>) |
|
tensor([[0.1881]], device='cuda:0', grad_fn=<ViewBackward>) |
|
``` |
|
|
|
## 3. Decoder-only Mode |
|
|
|
For decoder-only mode, we give an example of **code completion**. |
|
|
|
```python |
|
context = """ |
|
def f(data,file_path): |
|
# write json data into file_path in python language |
|
""" |
|
tokens_ids = model.tokenize([context],max_length=512,mode="<decoder-only>") |
|
source_ids = torch.tensor(tokens_ids).to(device) |
|
prediction_ids = model.generate(source_ids, decoder_only=True, beam_size=3, max_length=128) |
|
predictions = model.decode(prediction_ids) |
|
print(context+predictions[0][0]) |
|
``` |
|
|
|
```python |
|
def f(data,file_path): |
|
# write json data into file_path in python language |
|
data = json.dumps(data) |
|
with open(file_path, 'w') as f: |
|
f.write(data) |
|
``` |
|
|
|
## 4. Encoder-Decoder Mode |
|
|
|
For encoder-decoder mode, we give two examples including: **function name prediction**, **API recommendation**, **code summarization**. |
|
|
|
### 1) **Function Name Prediction** |
|
|
|
```python |
|
context = """ |
|
def <mask0>(data,file_path): |
|
data = json.dumps(data) |
|
with open(file_path, 'w') as f: |
|
f.write(data) |
|
""" |
|
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>") |
|
source_ids = torch.tensor(tokens_ids).to(device) |
|
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128) |
|
predictions = model.decode(prediction_ids) |
|
print([x.replace("<mask0>","").strip() for x in predictions[0]]) |
|
``` |
|
|
|
```python |
|
['write_json', 'write_file', 'to_json'] |
|
``` |
|
|
|
### 2) API Recommendation |
|
|
|
```python |
|
context = """ |
|
def write_json(data,file_path): |
|
data = <mask0>(data) |
|
with open(file_path, 'w') as f: |
|
f.write(data) |
|
""" |
|
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>") |
|
source_ids = torch.tensor(tokens_ids).to(device) |
|
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128) |
|
predictions = model.decode(prediction_ids) |
|
print([x.replace("<mask0>","").strip() for x in predictions[0]]) |
|
``` |
|
|
|
```python |
|
['json.dumps', 'json.loads', 'str'] |
|
``` |
|
|
|
### 3) Code Summarization |
|
|
|
```python |
|
context = """ |
|
# <mask0> |
|
def write_json(data,file_path): |
|
data = json.dumps(data) |
|
with open(file_path, 'w') as f: |
|
f.write(data) |
|
""" |
|
tokens_ids = model.tokenize([context],max_length=512,mode="<encoder-decoder>") |
|
source_ids = torch.tensor(tokens_ids).to(device) |
|
prediction_ids = model.generate(source_ids, decoder_only=False, beam_size=3, max_length=128) |
|
predictions = model.decode(prediction_ids) |
|
print([x.replace("<mask0>","").strip() for x in predictions[0]]) |
|
``` |
|
|
|
```python |
|
['Write JSON to file', 'Write json to file', 'Write a json file'] |
|
``` |
|
|
|
|
|
|
|
|
|
# Reference |
|
If you use this code or UniXcoder, please consider citing us. |
|
|
|
<pre><code>@article{guo2022unixcoder, |
|
title={UniXcoder: Unified Cross-Modal Pre-training for Code Representation}, |
|
author={Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian}, |
|
journal={arXiv preprint arXiv:2203.03850}, |
|
year={2022} |
|
}</code></pre> |
|
|
|
|
|
|
|
|