adirik commited on
Commit
797fa14
1 Parent(s): e244e6a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - image-classification
6
+ datasets:
7
+ - imagenet-1k
8
+ widget:
9
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg
10
+ example_title: Tiger
11
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg
12
+ example_title: Teapot
13
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg
14
+ example_title: Palace
15
+ ---
16
+
17
+ # FocalNet (tiny-sized large reception field model)
18
+
19
+ FocalNet model trained on ImageNet-1k at resolution 224x224. It was introduced in the paper [Focal Modulation Networks
20
+ ](https://arxiv.org/abs/2203.11926) by Yang et al. and first released in [this repository](https://github.com/microsoft/FocalNet).
21
+
22
+ Disclaimer: The team releasing FocalNet did not write a model card for this model so this model card has been written by the Hugging Face team.
23
+
24
+ ## Model description
25
+
26
+ Focul Modulation Networks are an alternative to Vision Transformers, where self-attention (SA) is completely replaced by a focal modulation mechanism for modeling token interactions in vision.
27
+ Focal modulation comprises three components: (i) hierarchical contextualization, implemented using a stack of depth-wise convolutional layers, to encode visual contexts from short to long ranges, (ii) gated aggregation to selectively gather contexts for each query token based on its
28
+ content, and (iii) element-wise modulation or affine transformation to inject the aggregated context into the query. Extensive experiments show FocalNets outperform the state-of-the-art SA counterparts (e.g., Vision Transformers, Swin and Focal Transformers) with similar computational costs on the tasks of image classification, object detection, and segmentation.
29
+
30
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/focalnet_architecture.png)
31
+
32
+ ## Intended uses & limitations
33
+
34
+ You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=focalnet) to look for
35
+ fine-tuned versions on a task that interests you.
36
+
37
+ ### How to use
38
+
39
+ Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
40
+
41
+ ```python
42
+ from transformers import FocalNetImageProcessor, FocalNetForImageClassification
43
+ import torch
44
+ from datasets import load_dataset
45
+
46
+ dataset = load_dataset("huggingface/cats-image")
47
+ image = dataset["test"]["image"][0]
48
+
49
+ preprocessor = FocalNetImageProcessor.from_pretrained("microsoft/focalnet-tiny-lrf")
50
+ model = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny-lrf")
51
+
52
+ inputs = preprocessor(image, return_tensors="pt")
53
+
54
+ with torch.no_grad():
55
+ logits = model(**inputs).logits
56
+
57
+ # model predicts one of the 1000 ImageNet classes
58
+ predicted_label = logits.argmax(-1).item()
59
+ print(model.config.id2label[predicted_label]),
60
+ ```
61
+
62
+ For more code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/master/en/model_doc/focalnet).
63
+
64
+ ### BibTeX entry and citation info
65
+
66
+ ```bibtex
67
+ @article{DBLP:journals/corr/abs-2203-11926,
68
+ author = {Jianwei Yang and
69
+ Chunyuan Li and
70
+ Jianfeng Gao},
71
+ title = {Focal Modulation Networks},
72
+ journal = {CoRR},
73
+ volume = {abs/2203.11926},
74
+ year = {2022},
75
+ url = {https://doi.org/10.48550/arXiv.2203.11926},
76
+ doi = {10.48550/arXiv.2203.11926},
77
+ eprinttype = {arXiv},
78
+ eprint = {2203.11926},
79
+ timestamp = {Tue, 29 Mar 2022 18:07:24 +0200},
80
+ biburl = {https://dblp.org/rec/journals/corr/abs-2203-11926.bib},
81
+ bibsource = {dblp computer science bibliography, https://dblp.org}
82
+ }
83
+ ```