Update README.md
Browse files
README.md
CHANGED
@@ -11,22 +11,32 @@ Please check the [official repository](https://github.com/microsoft/DeBERTa) for
|
|
11 |
|
12 |
This the DeBERTa xlarge model(750M) fine-tuned with mnli task.
|
13 |
|
14 |
-
|
15 |
|
16 |
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
17 |
|
18 |
-
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC
|
19 |
-
|
20 |
-
|
|
21 |
-
|
|
22 |
-
|
|
23 |
-
|
|
24 |
-
| [DeBERTa-
|
25 |
-
| [DeBERTa-XLarge
|
26 |
-
|
27 |
-
|**[DeBERTa-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
|
|
|
11 |
|
12 |
This the DeBERTa xlarge model(750M) fine-tuned with mnli task.
|
13 |
|
14 |
+
### Fine-tuning on NLU tasks
|
15 |
|
16 |
We present the dev results on SQuAD 1.1/2.0 and several GLUE benchmark tasks.
|
17 |
|
18 |
+
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m/mm | SST-2 | QNLI | CoLA | RTE | MRPC | QQP |STS-B |
|
19 |
+
|---------------------------|-----------|-----------|-------------|-------|------|------|--------|-------|-------|------|
|
20 |
+
| | F1/EM | F1/EM | Acc | Acc | Acc | MCC | Acc |Acc/F1 |Acc/F1 |P/S |
|
21 |
+
| BERT-Large | 90.9/84.1 | 81.8/79.0 | 86.6/- | 93.2 | 92.3 | 60.6 | 70.4 | 88.0/- | 91.3/- |90.0/- |
|
22 |
+
| RoBERTa-Large | 94.6/88.9 | 89.4/86.5 | 90.2/- | 96.4 | 93.9 | 68.0 | 86.6 | 90.9/- | 92.2/- |92.4/- |
|
23 |
+
| XLNet-Large | 95.1/89.7 | 90.6/87.9 | 90.8/- | 97.0 | 94.9 | 69.0 | 85.9 | 90.8/- | 92.3/- |92.5/- |
|
24 |
+
| [DeBERTa-Large](https://huggingface.co/microsoft/deberta-large)<sup>1</sup> | 95.5/90.1 | 90.7/88.0 | 91.3/91.1| 96.5|95.3| 69.5| 91.0| 92.6/94.6| 92.3/- |92.8/92.5 |
|
25 |
+
| [DeBERTa-XLarge](https://huggingface.co/microsoft/deberta-xlarge)<sup>1</sup> | -/- | -/- | 91.5/91.2| 97.0 | - | - | 93.1 | 92.1/94.3 | - |92.9/92.7|
|
26 |
+
| [DeBERTa-XLarge-V2](https://huggingface.co/microsoft/deberta-xlarge-v2)<sup>1</sup>|95.8/90.8| 91.4/88.9|91.7/91.6| **97.5**| 95.8|71.1|**93.9**|92.0/94.2|92.3/89.8|92.9/92.9|
|
27 |
+
|**[DeBERTa-XXLarge-V2](https://huggingface.co/microsoft/deberta-xxlarge-v2)<sup>1,2</sup>**|**96.1/91.4**|**92.2/89.7**|**91.7/91.9**|97.2|**96.0**|**72.0**| 93.5| **93.1/94.9**|**92.7/90.3** |**93.2/93.1** |
|
28 |
+
--------
|
29 |
+
#### Notes.
|
30 |
+
- <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-XLarge-V2-MNLI](https://huggingface.co/microsoft/deberta-xlarge-v2-mnli), [DeBERTa-XXLarge-V2-MNLI](https://huggingface.co/microsoft/deberta-xxlarge-v2-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
|
31 |
+
- <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp**
|
32 |
+
|
33 |
+
```bash
|
34 |
+
cd transformers/examples/text-classification/
|
35 |
+
export TASK_NAME=mrpc
|
36 |
+
python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-xxlarge-v2 \
|
37 |
+
--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \
|
38 |
+
--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
|
39 |
+
```
|
40 |
|
41 |
|
42 |
|