Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/microsoft/deberta-base/README.md
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
|
3 |
+
license: mit
|
4 |
+
---
|
5 |
+
|
6 |
+
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
|
7 |
+
|
8 |
+
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
|
9 |
+
|
10 |
+
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
|
11 |
+
|
12 |
+
|
13 |
+
#### Fine-tuning on NLU tasks
|
14 |
+
|
15 |
+
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
|
16 |
+
|
17 |
+
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
|
18 |
+
|-------------------|-----------|-----------|--------|
|
19 |
+
| RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
|
20 |
+
| XLNet-Large | -/- | -/80.2 | 86.8 |
|
21 |
+
| **DeBERTa-base** | 93.1/87.2 | 86.2/83.1 | 88.8 |
|
22 |
+
|
23 |
+
### Citation
|
24 |
+
|
25 |
+
If you find DeBERTa useful for your work, please cite the following paper:
|
26 |
+
|
27 |
+
``` latex
|
28 |
+
@misc{he2020deberta,
|
29 |
+
title={DeBERTa: Decoding-enhanced BERT with Disentangled Attention},
|
30 |
+
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
|
31 |
+
year={2020},
|
32 |
+
eprint={2006.03654},
|
33 |
+
archivePrefix={arXiv},
|
34 |
+
primaryClass={cs.CL}
|
35 |
+
}
|
36 |
+
```
|