philippelaban commited on
Commit
88145e7
·
verified ·
1 Parent(s): 863bd91

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -8
README.md CHANGED
@@ -32,23 +32,20 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
32
  import torch
33
 
34
  # Load the model and tokenizer
35
- model_path = "microsoft/UserLM-8b"
36
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
37
- model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to("cuda")
38
 
39
  # Create a conversation
40
  messages = [{"role": "system", "content": "You are a user who wants to implement a special type of sequence. The sequence sums up the two previous numbers in the sequence and adds 1 to the result. The first two numbers in the sequence are 1 and 1."}]
41
  inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
42
 
43
- # Example 1: Generate response
44
- outputs = model.generate(inputs, max_new_tokens=100, do_sample=True, temperature=1.0)
45
- response = tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
46
- print(response) # This can output: “Create a sequence that always starts at 1, 1, and then sums the two previous numbers in the sequence, adds 1 to the result.”
47
-
48
- # Example 2: Generate response while ignoring the <|endconversation|> token
49
 
50
  end_conv_token = "<|endconversation|>"
51
  end_conv_token_id = tokenizer.encode(end_conv_token, add_special_tokens=False)
 
52
  outputs = model.generate(
53
  input_ids=inputs,
54
  do_sample=True,
 
32
  import torch
33
 
34
  # Load the model and tokenizer
35
+ model_path = "microsoft/userlm-8b"
36
  tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
37
+ model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).to("cuda")
38
 
39
  # Create a conversation
40
  messages = [{"role": "system", "content": "You are a user who wants to implement a special type of sequence. The sequence sums up the two previous numbers in the sequence and adds 1 to the result. The first two numbers in the sequence are 1 and 1."}]
41
  inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
42
 
43
+ end_token = "<|eot_id|>"
44
+ end_token_id = tokenizer.encode(end_token, add_special_tokens=False)
 
 
 
 
45
 
46
  end_conv_token = "<|endconversation|>"
47
  end_conv_token_id = tokenizer.encode(end_conv_token, add_special_tokens=False)
48
+
49
  outputs = model.generate(
50
  input_ids=inputs,
51
  do_sample=True,