|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ Phi4Flash model configuration""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  | import math | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Phi4FlashConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`Phi4FlashModel`]. It is used to instantiate an Phi4Flash | 
					
						
						|  | model according to the specified arguments, defining the model architecture. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 51200): | 
					
						
						|  | Vocabulary size of the Phi4Flash model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`Phi4FlashModel`]. | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 2048): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 8192): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 24): | 
					
						
						|  | Number of hidden layers in the Transformer decoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer decoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | 
					
						
						|  | `num_attention_heads`. | 
					
						
						|  | resid_pdrop (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | Dropout probability for mlp outputs. | 
					
						
						|  | embd_pdrop (`int`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio for the embeddings. | 
					
						
						|  | attention_dropout (`float`, *optional*, defaults to 0.0): | 
					
						
						|  | The dropout ratio after computing the attention scores. | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 2048): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048 | 
					
						
						|  | tokens. | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | layer_norm_eps (`float`, *optional*, defaults to 1e-05): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not. | 
					
						
						|  | tie_word_embeddings (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to tie weight embeddings | 
					
						
						|  | rope_theta (`float`, *optional*, defaults to 10000.0): | 
					
						
						|  | The base period of the RoPE embeddings. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import Phi4FlashModel, Phi4FlashConfig | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a Phi4Flash style configuration | 
					
						
						|  | >>> configuration = Phi4FlashConfig.from_pretrained("microsoft/Phi4-mini-flash-reasoning") | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model from the configuration | 
					
						
						|  | >>> model = Phi4FlashModel(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | model_type = "phi4flash" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=51200, | 
					
						
						|  | hidden_size=2560, | 
					
						
						|  | intermediate_size=9216, | 
					
						
						|  | num_hidden_layers=32, | 
					
						
						|  | num_attention_heads=40, | 
					
						
						|  | num_key_value_heads=4, | 
					
						
						|  | resid_pdrop=0.0, | 
					
						
						|  | embd_pdrop=0.0, | 
					
						
						|  | attention_dropout=0.0, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=4096, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | layer_norm_eps=1e-5, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | tie_word_embeddings=True, | 
					
						
						|  | rope_theta=10000.0, | 
					
						
						|  | bos_token_id=1, | 
					
						
						|  | eos_token_id=2, | 
					
						
						|  | sliding_window=2047, | 
					
						
						|  | mb_per_layer= 2, | 
					
						
						|  | mamba_d_state=16, | 
					
						
						|  | mamba_d_conv=4, | 
					
						
						|  | mamba_expand=2, | 
					
						
						|  | mamba_dt_rank="auto", | 
					
						
						|  | mamba_conv_bias=True, | 
					
						
						|  | mamba_proj_bias=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.resid_pdrop = resid_pdrop | 
					
						
						|  | self.embd_pdrop = embd_pdrop | 
					
						
						|  | self.attention_dropout = attention_dropout | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.layer_norm_eps = layer_norm_eps | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.mb_per_layer = mb_per_layer | 
					
						
						|  | self.sliding_window = [ | 
					
						
						|  | sliding_window if layer_idx < num_hidden_layers // 2 and layer_idx % 2 == 1 else None | 
					
						
						|  | for layer_idx in range(num_hidden_layers) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | self.mamba_d_state = mamba_d_state | 
					
						
						|  | self.mamba_d_conv = mamba_d_conv | 
					
						
						|  | self.mamba_expand = mamba_expand | 
					
						
						|  | self.mamba_dt_rank = math.ceil(self.hidden_size / 16) if mamba_dt_rank == "auto" else mamba_dt_rank | 
					
						
						|  | self.mamba_conv_bias = mamba_conv_bias | 
					
						
						|  | self.mamba_proj_bias = mamba_proj_bias | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def layers_block_type(self): | 
					
						
						|  | layer_block_types = [] | 
					
						
						|  | for i in range(self.num_hidden_layers): | 
					
						
						|  | if i % 2 == 1: | 
					
						
						|  | layer_block_type = "attention" if i <= (self.num_hidden_layers //2 +1) else "shared_attention" | 
					
						
						|  | else: | 
					
						
						|  | layer_block_type = "mamba" | 
					
						
						|  | layer_block_types.append(layer_block_type) | 
					
						
						|  | return layer_block_types |