|
import math |
|
from typing import Any, Dict, Optional, List, Tuple, Union |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
from einops import rearrange |
|
|
|
from transformers.modeling_outputs import SequenceClassifierOutputWithPast, CausalLMOutputWithPast, BaseModelOutputWithPast |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from transformers.cache_utils import Cache, DynamicCache |
|
|
|
from .triton_flash_blocksparse_attn import BlockSparseParams |
|
from .triton_blocksparse_attention_layer import BlockSparseAttentionLayer |
|
from .positional_embedding import RotaryEmbedding |
|
|
|
from .configuration_phi3_small import Phi3SmallConfig |
|
|
|
|
|
is_flash_attention_available = False |
|
try: |
|
import flash_attn |
|
if int(flash_attn.__version__.split('.')[0]) < 2: |
|
from flash_attn.flash_attn_interface import ( |
|
flash_attn_func, |
|
flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func, |
|
) |
|
|
|
|
|
def flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p=0.0, **kwargs): |
|
return flash_attn_func(qkv, cu_seqlens, dropout_p=dropout_p, max_s=max_seqlen, **kwargs) |
|
|
|
else: |
|
from flash_attn.flash_attn_interface import ( |
|
flash_attn_varlen_kvpacked_func, |
|
) |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
is_flash_attention_available = True |
|
except ImportError: |
|
pass |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
LegacyCache = Tuple[Tuple[torch.FloatTensor]] |
|
|
|
|
|
def info_value_of_dtype(dtype: torch.dtype): |
|
""" |
|
Returns the `finfo` or `iinfo` object of a given PyTorch data type. Does not allow torch.bool. |
|
""" |
|
if dtype == torch.bool: |
|
raise TypeError("Does not support torch.bool") |
|
elif dtype.is_floating_point: |
|
return torch.finfo(dtype) |
|
else: |
|
return torch.iinfo(dtype) |
|
|
|
|
|
|
|
def min_value_of_dtype(dtype: torch.dtype): |
|
""" |
|
Returns the minimum value of a given PyTorch data type. Does not allow torch.bool. |
|
""" |
|
return info_value_of_dtype(dtype).min |
|
|
|
|
|
def _get_unpad_data(attention_mask): |
|
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
@torch.jit.script |
|
def quick_gelu(x): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
@torch.jit.script |
|
def gegelu(input, limit: Optional[float] = None): |
|
a_gelu, a_linear = input[..., ::2], input[..., 1::2] |
|
if limit is not None: |
|
a_gelu = torch.where( |
|
torch.isinf(a_gelu), a_gelu, a_gelu.clamp(min=None, max=limit) |
|
) |
|
a_linear = torch.where( |
|
torch.isinf(a_linear), a_linear, a_linear.clamp(min=-limit, max=limit) |
|
) |
|
out_gelu = quick_gelu(a_gelu) |
|
return out_gelu * (a_linear + 1) |
|
|
|
def collapse_first_n_dims(x: torch.Tensor, n: int) -> torch.Tensor: |
|
""" |
|
Collapse the first `n` dimensions of a tensor into a single dimension. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
n (int): The number of dimensions to collapse. |
|
|
|
Returns: |
|
torch.Tensor: The output tensor. |
|
""" |
|
return x.view(-1, *x.shape[n:]) |
|
|
|
def pad_tensor_to_next_mult_of( |
|
tensor: torch.Tensor, |
|
dim: int, |
|
n: int, |
|
) -> Tuple[torch.Tensor, int]: |
|
""" |
|
Pads a tensor along a specified dimension to the next multiple of a given number. |
|
|
|
Args: |
|
tensor (torch.Tensor): The input tensor. |
|
dim (int): The dimension along which to pad the tensor. |
|
n (int): The number to pad the tensor to the next multiple of. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, int]: A tuple containing the padded tensor and the amount of padding added. |
|
""" |
|
residual = tensor.size(dim) % n |
|
if residual == 0: |
|
return tensor, 0 |
|
padding = n - residual |
|
padding_tensor = torch.zeros((*tensor.size()[:dim], padding, *tensor.size()[dim + 1:]), device=tensor.device, dtype=tensor.dtype) |
|
return torch.cat([tensor, padding_tensor], dim=dim), padding |
|
|
|
def strip_padding_from_tensor( |
|
tensor: torch.Tensor, |
|
dim: int, |
|
residual: int, |
|
) -> torch.Tensor: |
|
""" |
|
Removes padding from a tensor along a specified dimension. |
|
|
|
Args: |
|
tensor (torch.Tensor): The input tensor. |
|
dim (int): The dimension along which to remove padding. |
|
residual (int): The amount of padding to remove. |
|
|
|
Returns: |
|
torch.Tensor: The tensor with padding removed along the specified dimension. |
|
""" |
|
return torch.narrow(tensor, dim, 0, tensor.size(dim) - residual) |
|
|
|
class Phi3SmallMLP(nn.Module): |
|
def __init__(self, config: Phi3SmallConfig): |
|
super().__init__() |
|
self.config = config |
|
assert self.config.hidden_act == "gegelu", "Only `gegelu` is supported for the Phi-3-small model .." |
|
self.hidden_size = config.hidden_size |
|
self.gegelu_limit = config.gegelu_limit |
|
self.intermediate_size = config.intermediate_size |
|
|
|
self.up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size) |
|
self.dropout = nn.Dropout(config.ffn_dropout_prob) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.dropout( |
|
self.down_proj( |
|
gegelu(self.up_proj(x), limit=self.gegelu_limit) |
|
) |
|
) |
|
|
|
|
|
class Phi3SmallSelfAttention(nn.Module): |
|
def __init__(self, config: Phi3SmallConfig, layer_idx: Optional[int] = None) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
if layer_idx is None: |
|
logger.warning_once( |
|
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will " |
|
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
|
|
self.hidden_size = config.hidden_size |
|
|
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
|
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_q_per_kv = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_embedding_base = config.rope_embedding_base |
|
self.rope_position_scale = config.rope_position_scale |
|
self.is_causal = True |
|
|
|
self.attention_dropout_rate = config.attention_dropout_prob |
|
|
|
norm_factor = None |
|
if config.mup_use_scaling: |
|
norm_factor = self.head_dim / config.mup_attn_multiplier |
|
else: |
|
norm_factor = math.sqrt(self.head_dim) |
|
self.softmax_scale = 1.0 / norm_factor |
|
|
|
self.query_key_value = nn.Linear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim) |
|
self.dense = nn.Linear(self.hidden_size, self.hidden_size) |
|
|
|
self.blocksparse_params = None |
|
|
|
if self.config.dense_attention_every_n_layers and ((self.layer_idx + 1) % self.config.dense_attention_every_n_layers == 0): |
|
logger.info( |
|
f"Layer {layer_idx + 1} is using dense attention since it is divisible by " |
|
f"{self.config.dense_attention_every_n_layers}" |
|
) |
|
assert is_flash_attention_available, "Flash Attention is not available, but is needed for dense attention" |
|
else: |
|
|
|
self.blocksparse_params = BlockSparseParams.from_config(config) |
|
|
|
if self.blocksparse: |
|
active_head_range = None |
|
""" |
|
... note(bapatra):: |
|
|
|
In case of tensor parallelism and while using the heterogeneous head patterns, |
|
the active head range needs to be modified based on the tensor parallel rank |
|
and the tensor parallel world size. |
|
|
|
This is because in the case of heterogeneous head patterns, the kernel needs to know |
|
which head is on which device, so that it can pick the corresponding blocksparse head |
|
pattern correctly. |
|
|
|
Example: |
|
```python |
|
|
|
if not self.blocksparse_params.homo_head_pattern: |
|
tp_rank = torch.distributed.get_rank() % tp_world_size |
|
num_heads_per_partition = num_heads // tp_world_size |
|
active_head_range = (tp_rank * num_heads_per_partition, (tp_rank + 1) * num_heads_per_partition) |
|
|
|
``` |
|
|
|
""" |
|
|
|
self._blocksparse_layer = BlockSparseAttentionLayer( |
|
n_heads=self.num_heads, |
|
max_seq_len=self.max_position_embeddings, |
|
sparse_block_size=self.blocksparse_params.block_size, |
|
local_blocks=self.blocksparse_params.num_local_blocks, |
|
vert_stride=self.blocksparse_params.vert_stride, |
|
kernel_block_size=self.blocksparse_params.kernel_block_size, |
|
homo_head=self.blocksparse_params.homo_head_pattern, |
|
active_head_range=active_head_range, |
|
) |
|
self.rotary_emb = RotaryEmbedding.from_config(config) |
|
|
|
|
|
@property |
|
def blocksparse(self): |
|
return self.blocksparse_params is not None |
|
|
|
def _split_heads(self, mixed_x_layer: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
bs, sq, _ = mixed_x_layer.size() |
|
r""" |
|
The main idea is that we group tensors as |
|
[bs, sq, (q00, q01, ... q0m, k0, v0), (q10, q11, ... q1m, k1, v1), ... (qn0, qn1, ... qnm, kn, vn)] |
|
That ways, when the MP column sharding happens, this tensor will be sharded keeping all the |
|
queries and keys intact. In order to get the correct qkv, we first break into groups, and then |
|
index into the groups. |
|
""" |
|
|
|
intermediate_shape = (bs, sq, -1, (self.num_q_per_kv + 2), self.head_dim) |
|
mixed_x_layer = mixed_x_layer.view(*intermediate_shape) |
|
q = mixed_x_layer[:, :, :, :-2] |
|
k = mixed_x_layer[:, :, :, [-2]] |
|
v = mixed_x_layer[:, :, :, [-1]] |
|
q, k, v = [ |
|
rearrange( |
|
x, |
|
"bs sq group nh hn -> bs sq (group nh) hn" |
|
) for x in (q, k, v) |
|
] |
|
return q, k, v |
|
|
|
|
|
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): |
|
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape |
|
|
|
|
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) |
|
|
|
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) |
|
|
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
attention_mask = attention_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
def _apply_blocksparse_attention( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
attention_mask: Optional[torch.LongTensor], |
|
return_attention_probs: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Applies blocksparse attention to the input tensors. |
|
|
|
Args: |
|
q (torch.Tensor): The query tensor of shape (bs, nqp, seq_len, hn). |
|
k (torch.Tensor): The key tensor of shape (bs, nkp, seq_len, hn). |
|
v (torch.Tensor): The value tensor of shape (bs, nkp, seq_len, hn). |
|
attention_mask (Optional[torch.LongTensor]): The attention mask tensor of shape (bs, seq_len). |
|
return_attention_probs (bool, optional): Whether to return attention probabilities. Defaults to False. |
|
|
|
Returns: |
|
torch.Tensor: The context layer tensor of shape (bs, nqp, seq_len, hn). |
|
""" |
|
assert not return_attention_probs, "return_attention_probs is not supported for blocksparse attention" |
|
q, k, v = q.contiguous(), k.contiguous(), v.contiguous() |
|
|
|
if torch.is_grad_enabled(): |
|
|
|
context_layer = self._blocksparse_layer( |
|
q=q, k=k, v=v, sm_scale=self.softmax_scale |
|
) |
|
elif attention_mask is None: |
|
if q.size(0) != 1: |
|
logger.warning_once( |
|
"You are attempting to do batched inference without passing the attention mask.\n" |
|
"This is okay if you are running loglikelihood requests. However, if you want to do generation, " |
|
"this probably won't work as expected. Please pass the attention mask to the forward function." |
|
) |
|
context_layer = self._blocksparse_layer( |
|
q=q, k=k, v=v, sm_scale=self.softmax_scale |
|
) |
|
else: |
|
""" |
|
Shapes of tensors are as follows: |
|
q: (bs, nqp, seq_len, hdim) |
|
k: (bs, nkp, seq_len, hdim) |
|
v: (bs, nkp, seq_len, hdim) |
|
We first need to transpose the shapes to fit what the |
|
kernel needs, and the reinvert it back at the end of the operations |
|
""" |
|
assert attention_mask.ndim == 2, "The kernel, like flash-attention-2, only supports 2d attention masks ..." |
|
left_paddings = attention_mask.shape[1] - attention_mask.sum(dim=-1) |
|
|
|
q = q.transpose(1, 2).contiguous() |
|
|
|
k = k.transpose(1, 2).contiguous() |
|
|
|
v = v.transpose(1, 2).contiguous() |
|
context_layer = self._blocksparse_layer( |
|
q=q, k=k, v=v, sm_scale=self.softmax_scale, left_paddings=left_paddings.to(torch.int32) |
|
) |
|
|
|
context_layer = context_layer.transpose(1, 2).contiguous() |
|
return context_layer |
|
|
|
def _apply_dense_attention( |
|
self, |
|
q: torch.Tensor, |
|
k: torch.Tensor, |
|
v: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
return_attention_probs: bool = False, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
Apply dense attention |
|
|
|
Args: |
|
q (torch.Tensor): |
|
The query tensor, shape: (bs, num_query_heads, seq_len, head_size) |
|
k (torch.Tensor): |
|
The key tensor, shape: (bs, num_query_heads, seq_len, head_size) |
|
v (torch.Tensor): |
|
The value tensor, shape: (bs, num_query_heads, seq_len, head_size) |
|
|
|
return_attention_probs (bool, optional): |
|
Return the attention probabilities. Defaults to False. |
|
|
|
Returns: |
|
Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
Return the output of the attention aggregation. If `return_attention_probs` is True, then |
|
also return the attention probabilities |
|
|
|
.. note:: |
|
Right now, am assuming the expansion for the query key values is already done |
|
outside. But ideally, since Flash attention handles the GQA correctly, we can |
|
avoid doing that. |
|
|
|
""" |
|
attention_dropout_prob = self.attention_dropout_rate if self.training else 0.0 |
|
|
|
|
|
q = q.transpose(1, 2).contiguous() |
|
query_length = q.size(1) |
|
|
|
k = k.transpose(1, 2).contiguous() |
|
|
|
v = v.transpose(1, 2).contiguous() |
|
|
|
if attention_mask is not None: |
|
causal = q.size(2) == k.size(2) |
|
batch_size = q.shape[0] |
|
flat_q, flat_k, flat_v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( |
|
q, k, v, attention_mask, query_length |
|
) |
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_q, max_seqlen_k = max_seq_lens |
|
flat_kv = torch.cat((flat_k.unsqueeze(1), flat_v.unsqueeze(1)), dim=1) |
|
attn_output_unpad = flash_attn_varlen_kvpacked_func( |
|
q=flat_q, |
|
kv=flat_kv, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_q, |
|
max_seqlen_k=max_seqlen_k, |
|
dropout_p=attention_dropout_prob, |
|
softmax_scale=self.softmax_scale, |
|
causal=causal, |
|
return_attn_probs=return_attention_probs |
|
) |
|
attention_output = pad_input( |
|
attn_output_unpad, indices_q, batch_size, query_length |
|
) |
|
else: |
|
kv = torch.cat((k.unsqueeze(2), v.unsqueeze(2)), dim=2) |
|
cu_seqlens_q = torch.arange( |
|
0, (q.size(0) + 1), device=q.device, dtype=torch.int32 |
|
) * q.size(1) |
|
cu_seqlens_kv = torch.arange( |
|
0, (kv.size(0) + 1), device=kv.device, dtype=torch.int32 |
|
) * kv.size(1) |
|
max_seqlen_q = q.size(1) |
|
max_seqlen_k = kv.size(1) |
|
attention_output = flash_attn_varlen_kvpacked_func( |
|
q=collapse_first_n_dims(q, 2), |
|
kv=collapse_first_n_dims(kv, 2), |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_kv, |
|
max_seqlen_q=max_seqlen_q, |
|
max_seqlen_k=max_seqlen_k, |
|
dropout_p=attention_dropout_prob, |
|
softmax_scale=self.softmax_scale, |
|
causal=q.size(1) == kv.size(1), |
|
return_attn_probs=return_attention_probs |
|
) |
|
if return_attention_probs: |
|
(context_layer, attn_probs) = attention_output |
|
context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous() |
|
return (context_layer, attn_probs) |
|
context_layer = attention_output |
|
context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous() |
|
return context_layer |
|
|
|
|
|
def expand_kv_to_q_size(self, kv: torch.Tensor, num_q_per_kv: int) -> torch.Tensor: |
|
""" |
|
Expand the key-value tensor to match the size of the query tensor. |
|
|
|
Args: |
|
kv (torch.Tensor): The key-value tensor of shape (bsz, nkp, 2, seq_len, hdim). |
|
num_q_per_kv (int): The number of queries per key-value. |
|
|
|
Returns: |
|
torch.Tensor: The expanded key-value tensor of shape (bsz, nqp, 2, seq_len, hdim). |
|
Where nqp = num_q_per_kv * nkp |
|
|
|
.. note(bapatra):: |
|
Right now, I am using a repeat_interleave to expand the kv to the size of q. |
|
This incurs a memory penalty, since the tensors are actually copied. |
|
TODO: If this does yield benefits, then potentially we can use the re-written |
|
flash attention kernel that can handle GQA. |
|
""" |
|
|
|
repeats = torch.tensor([num_q_per_kv] * kv.size(1)).to(kv.device) |
|
total = repeats.sum() |
|
expanded_kv = torch.repeat_interleave( |
|
kv, |
|
repeats=repeats, |
|
dim=1, |
|
output_size=total |
|
) |
|
return expanded_kv |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
""" |
|
The forward function of the Self Attention Layer. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): |
|
The input tensor of shape (bs, q_len, h). |
|
attention_mask (Optional[torch.Tensor], optional): |
|
The attention mask tensor of shape (bs, seq_len). This is the 2D attention mask tensor as is standard in the flash-attention |
|
kernel. |
|
Defaults to None. |
|
position_ids (Optional[torch.LongTensor], optional): |
|
The position ids tensor of shape (bs, q_len). Defaults to None. Unused by the function. |
|
past_key_value (Optional[Cache], optional): |
|
The previous kv cache values. Defaults to None. |
|
output_attentions (bool, optional): |
|
Whether to return the attention scores. Defaults to False. |
|
.. note:: |
|
For the blocksparse attention kernel, we do not support returning the attention scores. |
|
use_cache (bool, optional): |
|
Whether to use the cache for storing the kv. Defaults to False. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
The output tensor of shape (bs, q_len, h), |
|
the attention scores tensor of shape (bs, nqp, q_len, seq_len) if `output_attentions` is True, |
|
and the updated cache values if `use_cache` is True. |
|
|
|
Notations: |
|
------------ |
|
bs: batch size |
|
sq_len: sequence length of the entire sequence |
|
q_len: sequence length of the query |
|
cache_sq: sequence length in the cache |
|
If there is no cache then cache_sq = 0 |
|
and sq_len = q_len |
|
otherwise sq_len = q_len + cache_sq |
|
h: hidden size |
|
nq: number of query heads |
|
nkv: number of key heads |
|
hn: hidden size per head |
|
hn = h // nq |
|
nqp: number of query heads (per MP partition) |
|
nqp = nq // (num mp partitions) |
|
nkvp: number of key-value heads (per MP partition) |
|
nkvp = nk // (num mp partitions) |
|
|
|
""" |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
mixed_x_layer = self.query_key_value(hidden_states) |
|
|
|
q, k, v = self._split_heads(mixed_x_layer) |
|
|
|
|
|
query_states = q.permute(0, 2, 1, 3).contiguous() |
|
|
|
key_states = k.permute(0, 2, 1, 3).contiguous() |
|
|
|
value_states = v.permute(0, 2, 1, 3).contiguous() |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_values is not None: |
|
if self.layer_idx is None: |
|
raise ValueError( |
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " |
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " |
|
"with a layer index." |
|
) |
|
if self.rotary_emb is not None: |
|
seqlen_offset = past_key_values.get_usable_length(kv_seq_len, layer_idx=self.layer_idx) |
|
|
|
query_states, key_states = self.rotary_emb( |
|
query_states, key_states, seq_dimension=2, seqlen_offset=seqlen_offset |
|
) |
|
key_states, value_states = past_key_values.update(key_states=key_states, value_states=value_states, layer_idx=self.layer_idx) |
|
else: |
|
|
|
if self.rotary_emb is not None: |
|
|
|
query_states, key_states = self.rotary_emb(query_states, key_states, seq_dimension=2) |
|
|
|
|
|
kv_states = torch.cat((key_states.unsqueeze(2), value_states.unsqueeze(2)), dim=2) |
|
|
|
expanded_kv_states = self.expand_kv_to_q_size(kv_states, num_q_per_kv=self.num_q_per_kv) |
|
|
|
expanded_key_states, expanded_value_states = expanded_kv_states[:, :, 0], expanded_kv_states[:, :, 1] |
|
if self.blocksparse: |
|
attn_function_output = self._apply_blocksparse_attention( |
|
q=query_states, |
|
k=expanded_key_states, |
|
v=expanded_value_states, |
|
attention_mask=attention_mask, |
|
return_attention_probs=output_attentions |
|
) |
|
else: |
|
attn_function_output = self._apply_dense_attention( |
|
q=query_states, |
|
k=expanded_key_states, |
|
v=expanded_value_states, |
|
attention_mask=attention_mask, |
|
return_attention_probs=output_attentions |
|
) |
|
|
|
attn_weights = None |
|
if output_attentions: |
|
attn_output, attn_weights = attn_function_output |
|
else: |
|
|
|
attn_output = attn_function_output |
|
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
attn_output = attn_output.view(bsz, q_len, -1) |
|
attn_output = self.dense(attn_output) |
|
return attn_output, attn_weights, past_key_values |
|
|
|
|
|
class Phi3SmallDecoderLayer(nn.Module): |
|
def __init__(self, config: Phi3SmallConfig, layer_idx: int): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.self_attn = Phi3SmallSelfAttention(config, layer_idx) |
|
self.mlp = Phi3SmallMLP(config) |
|
|
|
self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
output_attentions: Optional[bool] = None, |
|
use_cache: Optional[bool] = None, |
|
**kwargs, |
|
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Cache]]: |
|
residual = hidden_states |
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_values = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_values,) |
|
|
|
return outputs |
|
|
|
|
|
|
|
class Phi3SmallPreTrainedModel(PreTrainedModel): |
|
config_class = Phi3SmallConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Phi3SmallDecoderLayer"] |
|
skip_keys_device_placement = "past_key_values" |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = False |
|
_supports_cache_class = True |
|
|
|
def _init_weights(self, module: nn.Module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
|
|
for name, p in module.named_parameters(): |
|
if any(x in name for x in ("c_proj.weight", "down_proj.weight", "o_proj.weight")): |
|
|
|
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers))) |
|
|
|
|
|
class Phi3SmallModel(Phi3SmallPreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size) |
|
|
|
|
|
self.embedding_dropout = nn.Dropout(config.embedding_dropout_prob) |
|
|
|
|
|
self.mup_embedding_multiplier = config.mup_embedding_multiplier |
|
|
|
self.layers = nn.ModuleList([Phi3SmallDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) |
|
|
|
self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
@property |
|
def pad_sequence_to_multiple_of_64(self): |
|
|
|
|
|
return self.config.pad_sequence_to_multiple_of_64 and torch.is_grad_enabled() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Union[Cache, LegacyCache]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
past_key_values_length = 0 |
|
|
|
if use_cache: |
|
use_legacy_cache = not isinstance(past_key_values, Cache) |
|
if use_legacy_cache: |
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values) |
|
past_key_values_length = past_key_values.get_usable_length(seq_length) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, past_key_values_length + seq_length, dtype=torch.long, device=device |
|
) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
if attention_mask is not None: |
|
if batch_size <= 0: |
|
raise ValueError("batch_size has to be defined and > 0") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
inputs_embeds = self.embedding_dropout(inputs_embeds) |
|
|
|
if self.mup_embedding_multiplier is not None and self.mup_embedding_multiplier > 0.0: |
|
inputs_embeds = inputs_embeds * self.mup_embedding_multiplier |
|
|
|
residual = 0 |
|
if self.pad_sequence_to_multiple_of_64: |
|
|
|
|
|
inputs_embeds, residual = pad_tensor_to_next_mult_of(tensor=inputs_embeds, dim=1, n=64) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = None |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
) |
|
hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1] |
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
if residual > 0: |
|
hidden_states = strip_padding_from_tensor(tensor=hidden_states, dim=1, residual=residual) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = None |
|
if use_cache: |
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class Phi3SmallForCausalLM(Phi3SmallPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = Phi3SmallModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, self.vocab_size, bias=False) |
|
self.mup_width_multiplier = config.mup_width_multiplier |
|
|
|
|
|
dummy_token_indices = config.dummy_token_indices |
|
dummy_tokens_mask = torch.zeros(self.vocab_size).bool() |
|
dummy_tokens_mask[dummy_token_indices] = True |
|
|
|
self.register_buffer("dummy_tokens_mask", dummy_tokens_mask, persistent=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, value): |
|
self.lm_head = value |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits.float() |
|
if self.mup_width_multiplier: |
|
logits = logits / self.mup_width_multiplier |
|
logits = logits.masked_fill(self.dummy_tokens_mask, min_value_of_dtype(logits.dtype)) |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.LongTensor, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
**kwargs |
|
) -> Dict[str, Any]: |
|
|
|
if past_key_values: |
|
input_ids = input_ids[:, -1].unsqueeze(-1) |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
else: |
|
position_ids = None |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"position_ids": position_ids, |
|
"attention_mask": attention_mask, |
|
} |
|
) |
|
return model_inputs |
|
|
|
|
|
|
|
class Phi3SmallForSequenceClassification(Phi3SmallPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.model = Phi3SmallModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]: |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
transformer_outputs = self.model( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = transformer_outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size = input_ids.shape[0] |
|
else: |
|
batch_size = inputs_embeds.shape[0] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
|
|
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 |
|
sequence_lengths = sequence_lengths % input_ids.shape[-1] |
|
sequence_lengths = sequence_lengths.to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = nn.MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = nn.BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + transformer_outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=transformer_outputs.past_key_values, |
|
hidden_states=transformer_outputs.hidden_states, |
|
attentions=transformer_outputs.attentions, |
|
) |
|
|