Update sample_finetune.py
Browse files- sample_finetune.py +60 -21
sample_finetune.py
CHANGED
@@ -4,7 +4,9 @@ from trl import SFTTrainer
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
|
5 |
|
6 |
"""
|
7 |
-
|
|
|
|
|
8 |
1. Install accelerate:
|
9 |
conda install -c conda-forge accelerate
|
10 |
2. Setup accelerate config:
|
@@ -14,19 +16,16 @@ to simply use all the GPUs available:
|
|
14 |
check accelerate config:
|
15 |
accelerate env
|
16 |
3. Run the code:
|
17 |
-
accelerate launch
|
18 |
"""
|
19 |
|
20 |
###################
|
21 |
# Hyper-parameters
|
22 |
###################
|
23 |
-
|
24 |
-
|
25 |
args = {
|
26 |
"bf16": True,
|
27 |
"do_eval": False,
|
28 |
-
"
|
29 |
-
"eval_steps": 100,
|
30 |
"learning_rate": 5.0e-06,
|
31 |
"log_level": "info",
|
32 |
"logging_steps": 20,
|
@@ -34,7 +33,7 @@ args = {
|
|
34 |
"lr_scheduler_type": "cosine",
|
35 |
"num_train_epochs": 1,
|
36 |
"max_steps": -1,
|
37 |
-
"output_dir": "
|
38 |
"overwrite_output_dir": True,
|
39 |
"per_device_eval_batch_size": 4,
|
40 |
"per_device_train_batch_size": 8,
|
@@ -43,8 +42,9 @@ args = {
|
|
43 |
"save_total_limit": 1,
|
44 |
"seed": 0,
|
45 |
"gradient_checkpointing": True,
|
|
|
46 |
"gradient_accumulation_steps": 1,
|
47 |
-
"warmup_ratio": 0.
|
48 |
}
|
49 |
|
50 |
training_args = TrainingArguments(**args)
|
@@ -53,40 +53,79 @@ training_args = TrainingArguments(**args)
|
|
53 |
################
|
54 |
# Modle Loading
|
55 |
################
|
56 |
-
|
57 |
-
checkpoint_path = "microsoft/Phi-3-mini-128k-instruct"
|
58 |
model_kwargs = dict(
|
|
|
59 |
trust_remote_code=True,
|
60 |
-
attn_implementation="flash_attention_2", #
|
61 |
torch_dtype=torch.bfloat16,
|
62 |
device_map="cuda",
|
63 |
)
|
64 |
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
|
65 |
-
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
# Data
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
eval_dataset = dataset["test"]
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
################
|
77 |
-
# Training
|
78 |
-
################
|
79 |
|
|
|
|
|
|
|
80 |
trainer = SFTTrainer(
|
81 |
model=model,
|
82 |
args=training_args,
|
83 |
train_dataset=train_dataset,
|
|
|
84 |
max_seq_length=2048,
|
85 |
dataset_text_field="text",
|
86 |
tokenizer=tokenizer,
|
|
|
87 |
)
|
88 |
train_result = trainer.train()
|
89 |
metrics = train_result.metrics
|
90 |
trainer.log_metrics("train", metrics)
|
91 |
trainer.save_metrics("train", metrics)
|
92 |
trainer.save_state()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
|
5 |
|
6 |
"""
|
7 |
+
A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
|
8 |
+
a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py
|
9 |
+
|
10 |
1. Install accelerate:
|
11 |
conda install -c conda-forge accelerate
|
12 |
2. Setup accelerate config:
|
|
|
16 |
check accelerate config:
|
17 |
accelerate env
|
18 |
3. Run the code:
|
19 |
+
accelerate launch sample_finetune.py
|
20 |
"""
|
21 |
|
22 |
###################
|
23 |
# Hyper-parameters
|
24 |
###################
|
|
|
|
|
25 |
args = {
|
26 |
"bf16": True,
|
27 |
"do_eval": False,
|
28 |
+
"eval_strategy": "no",
|
|
|
29 |
"learning_rate": 5.0e-06,
|
30 |
"log_level": "info",
|
31 |
"logging_steps": 20,
|
|
|
33 |
"lr_scheduler_type": "cosine",
|
34 |
"num_train_epochs": 1,
|
35 |
"max_steps": -1,
|
36 |
+
"output_dir": "./checkpoint_dir",
|
37 |
"overwrite_output_dir": True,
|
38 |
"per_device_eval_batch_size": 4,
|
39 |
"per_device_train_batch_size": 8,
|
|
|
42 |
"save_total_limit": 1,
|
43 |
"seed": 0,
|
44 |
"gradient_checkpointing": True,
|
45 |
+
"gradient_checkpointing_kwargs":{"use_reentrant": False},
|
46 |
"gradient_accumulation_steps": 1,
|
47 |
+
"warmup_ratio": 0.2,
|
48 |
}
|
49 |
|
50 |
training_args = TrainingArguments(**args)
|
|
|
53 |
################
|
54 |
# Modle Loading
|
55 |
################
|
56 |
+
checkpoint_path = "microsoft/Phi-3-mini-4k-instruct"
|
57 |
+
# checkpoint_path = "microsoft/Phi-3-mini-128k-instruct"
|
58 |
model_kwargs = dict(
|
59 |
+
use_cache=False,
|
60 |
trust_remote_code=True,
|
61 |
+
attn_implementation="flash_attention_2", # loading the model with flash-attenstion support
|
62 |
torch_dtype=torch.bfloat16,
|
63 |
device_map="cuda",
|
64 |
)
|
65 |
model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
|
67 |
+
tokenizer.pad_token = tokenizer.unk_token # use unk rather than eos token to prevent endless generation
|
68 |
+
tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
|
69 |
+
tokenizer.padding_side = 'right'
|
70 |
|
71 |
+
##################
|
72 |
+
# Data Processing
|
73 |
+
##################
|
74 |
+
def apply_chat_template(
|
75 |
+
example,
|
76 |
+
tokenizer,
|
77 |
+
):
|
78 |
+
messages = example["messages"]
|
79 |
+
# Add an empty system message if there is none
|
80 |
+
if messages[0]["role"] != "system":
|
81 |
+
messages.insert(0, {"role": "system", "content": ""})
|
82 |
+
example["text"] = tokenizer.apply_chat_template(
|
83 |
+
messages, tokenize=False, add_generation_prompt=False)
|
84 |
+
return example
|
85 |
|
86 |
+
raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
|
87 |
+
column_names = list(raw_dataset["train_sft"].features)
|
|
|
88 |
|
89 |
+
processed_dataset = raw_dataset.map(
|
90 |
+
apply_chat_template,
|
91 |
+
fn_kwargs={"tokenizer": tokenizer},
|
92 |
+
num_proc=12,
|
93 |
+
remove_columns=column_names,
|
94 |
+
desc="Applying chat template",
|
95 |
+
)
|
96 |
+
train_dataset = processed_dataset["train_sft"]
|
97 |
+
eval_dataset = processed_dataset["test_sft"]
|
98 |
|
|
|
|
|
|
|
99 |
|
100 |
+
###########
|
101 |
+
# Training
|
102 |
+
###########
|
103 |
trainer = SFTTrainer(
|
104 |
model=model,
|
105 |
args=training_args,
|
106 |
train_dataset=train_dataset,
|
107 |
+
eval_dataset=eval_dataset,
|
108 |
max_seq_length=2048,
|
109 |
dataset_text_field="text",
|
110 |
tokenizer=tokenizer,
|
111 |
+
packing=True
|
112 |
)
|
113 |
train_result = trainer.train()
|
114 |
metrics = train_result.metrics
|
115 |
trainer.log_metrics("train", metrics)
|
116 |
trainer.save_metrics("train", metrics)
|
117 |
trainer.save_state()
|
118 |
+
|
119 |
+
#############
|
120 |
+
# Evaluation
|
121 |
+
#############
|
122 |
+
tokenizer.padding_side = 'left'
|
123 |
+
metrics = trainer.evaluate()
|
124 |
+
metrics["eval_samples"] = len(eval_dataset)
|
125 |
+
trainer.log_metrics("eval", metrics)
|
126 |
+
trainer.save_metrics("eval", metrics)
|
127 |
+
|
128 |
+
############
|
129 |
+
# Save model
|
130 |
+
############
|
131 |
+
trainer.save_model(training_args.output_dir)
|