Ozan Oktay
commited on
Commit
•
cf131e0
1
Parent(s):
fb5ad5d
Delete tokenization_bert_fast.py
Browse files- tokenization_bert_fast.py +0 -260
tokenization_bert_fast.py
DELETED
@@ -1,260 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Fast Tokenization classes for Bert."""
|
16 |
-
|
17 |
-
import json
|
18 |
-
from typing import List, Optional, Tuple
|
19 |
-
|
20 |
-
from tokenizers import normalizers
|
21 |
-
|
22 |
-
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
-
from ...utils import logging
|
24 |
-
from .tokenization_bert import BertTokenizer
|
25 |
-
|
26 |
-
|
27 |
-
logger = logging.get_logger(__name__)
|
28 |
-
|
29 |
-
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
30 |
-
|
31 |
-
PRETRAINED_VOCAB_FILES_MAP = {
|
32 |
-
"vocab_file": {
|
33 |
-
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
|
34 |
-
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
|
35 |
-
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
|
36 |
-
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
|
37 |
-
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt",
|
38 |
-
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
|
39 |
-
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
|
40 |
-
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
|
41 |
-
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt",
|
42 |
-
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt",
|
43 |
-
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
44 |
-
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
45 |
-
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt",
|
46 |
-
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
|
47 |
-
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt",
|
48 |
-
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt",
|
49 |
-
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt",
|
50 |
-
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt",
|
51 |
-
},
|
52 |
-
"tokenizer_file": {
|
53 |
-
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json",
|
54 |
-
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json",
|
55 |
-
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json",
|
56 |
-
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json",
|
57 |
-
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json",
|
58 |
-
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json",
|
59 |
-
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json",
|
60 |
-
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json",
|
61 |
-
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json",
|
62 |
-
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json",
|
63 |
-
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json",
|
64 |
-
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json",
|
65 |
-
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json",
|
66 |
-
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json",
|
67 |
-
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json",
|
68 |
-
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json",
|
69 |
-
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json",
|
70 |
-
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json",
|
71 |
-
},
|
72 |
-
}
|
73 |
-
|
74 |
-
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
75 |
-
"bert-base-uncased": 512,
|
76 |
-
"bert-large-uncased": 512,
|
77 |
-
"bert-base-cased": 512,
|
78 |
-
"bert-large-cased": 512,
|
79 |
-
"bert-base-multilingual-uncased": 512,
|
80 |
-
"bert-base-multilingual-cased": 512,
|
81 |
-
"bert-base-chinese": 512,
|
82 |
-
"bert-base-german-cased": 512,
|
83 |
-
"bert-large-uncased-whole-word-masking": 512,
|
84 |
-
"bert-large-cased-whole-word-masking": 512,
|
85 |
-
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
|
86 |
-
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
|
87 |
-
"bert-base-cased-finetuned-mrpc": 512,
|
88 |
-
"bert-base-german-dbmdz-cased": 512,
|
89 |
-
"bert-base-german-dbmdz-uncased": 512,
|
90 |
-
"TurkuNLP/bert-base-finnish-cased-v1": 512,
|
91 |
-
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
|
92 |
-
"wietsedv/bert-base-dutch-cased": 512,
|
93 |
-
}
|
94 |
-
|
95 |
-
PRETRAINED_INIT_CONFIGURATION = {
|
96 |
-
"bert-base-uncased": {"do_lower_case": True},
|
97 |
-
"bert-large-uncased": {"do_lower_case": True},
|
98 |
-
"bert-base-cased": {"do_lower_case": False},
|
99 |
-
"bert-large-cased": {"do_lower_case": False},
|
100 |
-
"bert-base-multilingual-uncased": {"do_lower_case": True},
|
101 |
-
"bert-base-multilingual-cased": {"do_lower_case": False},
|
102 |
-
"bert-base-chinese": {"do_lower_case": False},
|
103 |
-
"bert-base-german-cased": {"do_lower_case": False},
|
104 |
-
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
|
105 |
-
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
|
106 |
-
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
|
107 |
-
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
|
108 |
-
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
|
109 |
-
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
|
110 |
-
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
|
111 |
-
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
|
112 |
-
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
|
113 |
-
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
|
114 |
-
}
|
115 |
-
|
116 |
-
|
117 |
-
class BertTokenizerFast(PreTrainedTokenizerFast):
|
118 |
-
r"""
|
119 |
-
Construct a "fast" BERT tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
|
120 |
-
|
121 |
-
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
122 |
-
refer to this superclass for more information regarding those methods.
|
123 |
-
|
124 |
-
Args:
|
125 |
-
vocab_file (`str`):
|
126 |
-
File containing the vocabulary.
|
127 |
-
do_lower_case (`bool`, *optional*, defaults to `True`):
|
128 |
-
Whether or not to lowercase the input when tokenizing.
|
129 |
-
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
130 |
-
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
131 |
-
token instead.
|
132 |
-
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
133 |
-
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
134 |
-
sequence classification or for a text and a question for question answering. It is also used as the last
|
135 |
-
token of a sequence built with special tokens.
|
136 |
-
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
137 |
-
The token used for padding, for example when batching sequences of different lengths.
|
138 |
-
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
139 |
-
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
140 |
-
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
141 |
-
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
142 |
-
The token used for masking values. This is the token used when training this model with masked language
|
143 |
-
modeling. This is the token which the model will try to predict.
|
144 |
-
clean_text (`bool`, *optional*, defaults to `True`):
|
145 |
-
Whether or not to clean the text before tokenization by removing any control characters and replacing all
|
146 |
-
whitespaces by the classic one.
|
147 |
-
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
148 |
-
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
|
149 |
-
issue](https://github.com/huggingface/transformers/issues/328)).
|
150 |
-
strip_accents (`bool`, *optional*):
|
151 |
-
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
152 |
-
value for `lowercase` (as in the original BERT).
|
153 |
-
wordpieces_prefix (`str`, *optional*, defaults to `"##"`):
|
154 |
-
The prefix for subwords.
|
155 |
-
"""
|
156 |
-
|
157 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
158 |
-
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
159 |
-
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
160 |
-
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
161 |
-
slow_tokenizer_class = BertTokenizer
|
162 |
-
|
163 |
-
def __init__(
|
164 |
-
self,
|
165 |
-
vocab_file=None,
|
166 |
-
tokenizer_file=None,
|
167 |
-
do_lower_case=True,
|
168 |
-
unk_token="[UNK]",
|
169 |
-
sep_token="[SEP]",
|
170 |
-
pad_token="[PAD]",
|
171 |
-
cls_token="[CLS]",
|
172 |
-
mask_token="[MASK]",
|
173 |
-
tokenize_chinese_chars=True,
|
174 |
-
strip_accents=None,
|
175 |
-
**kwargs
|
176 |
-
):
|
177 |
-
super().__init__(
|
178 |
-
vocab_file,
|
179 |
-
tokenizer_file=tokenizer_file,
|
180 |
-
do_lower_case=do_lower_case,
|
181 |
-
unk_token=unk_token,
|
182 |
-
sep_token=sep_token,
|
183 |
-
pad_token=pad_token,
|
184 |
-
cls_token=cls_token,
|
185 |
-
mask_token=mask_token,
|
186 |
-
tokenize_chinese_chars=tokenize_chinese_chars,
|
187 |
-
strip_accents=strip_accents,
|
188 |
-
**kwargs,
|
189 |
-
)
|
190 |
-
|
191 |
-
normalizer_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
|
192 |
-
if (
|
193 |
-
normalizer_state.get("lowercase", do_lower_case) != do_lower_case
|
194 |
-
or normalizer_state.get("strip_accents", strip_accents) != strip_accents
|
195 |
-
or normalizer_state.get("handle_chinese_chars", tokenize_chinese_chars) != tokenize_chinese_chars
|
196 |
-
):
|
197 |
-
normalizer_class = getattr(normalizers, normalizer_state.pop("type"))
|
198 |
-
normalizer_state["lowercase"] = do_lower_case
|
199 |
-
normalizer_state["strip_accents"] = strip_accents
|
200 |
-
normalizer_state["handle_chinese_chars"] = tokenize_chinese_chars
|
201 |
-
self.backend_tokenizer.normalizer = normalizer_class(**normalizer_state)
|
202 |
-
|
203 |
-
self.do_lower_case = do_lower_case
|
204 |
-
|
205 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
206 |
-
"""
|
207 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
208 |
-
adding special tokens. A BERT sequence has the following format:
|
209 |
-
|
210 |
-
- single sequence: `[CLS] X [SEP]`
|
211 |
-
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
212 |
-
|
213 |
-
Args:
|
214 |
-
token_ids_0 (`List[int]`):
|
215 |
-
List of IDs to which the special tokens will be added.
|
216 |
-
token_ids_1 (`List[int]`, *optional*):
|
217 |
-
Optional second list of IDs for sequence pairs.
|
218 |
-
|
219 |
-
Returns:
|
220 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
221 |
-
"""
|
222 |
-
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
223 |
-
|
224 |
-
if token_ids_1:
|
225 |
-
output += token_ids_1 + [self.sep_token_id]
|
226 |
-
|
227 |
-
return output
|
228 |
-
|
229 |
-
def create_token_type_ids_from_sequences(
|
230 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
231 |
-
) -> List[int]:
|
232 |
-
"""
|
233 |
-
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
234 |
-
pair mask has the following format:
|
235 |
-
|
236 |
-
```
|
237 |
-
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
238 |
-
| first sequence | second sequence |
|
239 |
-
```
|
240 |
-
|
241 |
-
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
242 |
-
|
243 |
-
Args:
|
244 |
-
token_ids_0 (`List[int]`):
|
245 |
-
List of IDs.
|
246 |
-
token_ids_1 (`List[int]`, *optional*):
|
247 |
-
Optional second list of IDs for sequence pairs.
|
248 |
-
|
249 |
-
Returns:
|
250 |
-
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
251 |
-
"""
|
252 |
-
sep = [self.sep_token_id]
|
253 |
-
cls = [self.cls_token_id]
|
254 |
-
if token_ids_1 is None:
|
255 |
-
return len(cls + token_ids_0 + sep) * [0]
|
256 |
-
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
257 |
-
|
258 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
259 |
-
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
260 |
-
return tuple(files)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|