Ozan Oktay
commited on
Commit
•
fb5ad5d
1
Parent(s):
ae820b0
Delete tokenization_bert.py
Browse files- tokenization_bert.py +0 -554
tokenization_bert.py
DELETED
@@ -1,554 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Tokenization classes for Bert."""
|
16 |
-
|
17 |
-
|
18 |
-
import collections
|
19 |
-
import os
|
20 |
-
import unicodedata
|
21 |
-
from typing import List, Optional, Tuple
|
22 |
-
|
23 |
-
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
24 |
-
from ...utils import logging
|
25 |
-
|
26 |
-
|
27 |
-
logger = logging.get_logger(__name__)
|
28 |
-
|
29 |
-
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
|
30 |
-
|
31 |
-
PRETRAINED_VOCAB_FILES_MAP = {
|
32 |
-
"vocab_file": {
|
33 |
-
"bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt",
|
34 |
-
"bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt",
|
35 |
-
"bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/vocab.txt",
|
36 |
-
"bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/vocab.txt",
|
37 |
-
"bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt",
|
38 |
-
"bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt",
|
39 |
-
"bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt",
|
40 |
-
"bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt",
|
41 |
-
"bert-large-uncased-whole-word-masking": "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt",
|
42 |
-
"bert-large-cased-whole-word-masking": "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt",
|
43 |
-
"bert-large-uncased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
44 |
-
"bert-large-cased-whole-word-masking-finetuned-squad": "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt",
|
45 |
-
"bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt",
|
46 |
-
"bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt",
|
47 |
-
"bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt",
|
48 |
-
"TurkuNLP/bert-base-finnish-cased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt",
|
49 |
-
"TurkuNLP/bert-base-finnish-uncased-v1": "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt",
|
50 |
-
"wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt",
|
51 |
-
}
|
52 |
-
}
|
53 |
-
|
54 |
-
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
55 |
-
"bert-base-uncased": 512,
|
56 |
-
"bert-large-uncased": 512,
|
57 |
-
"bert-base-cased": 512,
|
58 |
-
"bert-large-cased": 512,
|
59 |
-
"bert-base-multilingual-uncased": 512,
|
60 |
-
"bert-base-multilingual-cased": 512,
|
61 |
-
"bert-base-chinese": 512,
|
62 |
-
"bert-base-german-cased": 512,
|
63 |
-
"bert-large-uncased-whole-word-masking": 512,
|
64 |
-
"bert-large-cased-whole-word-masking": 512,
|
65 |
-
"bert-large-uncased-whole-word-masking-finetuned-squad": 512,
|
66 |
-
"bert-large-cased-whole-word-masking-finetuned-squad": 512,
|
67 |
-
"bert-base-cased-finetuned-mrpc": 512,
|
68 |
-
"bert-base-german-dbmdz-cased": 512,
|
69 |
-
"bert-base-german-dbmdz-uncased": 512,
|
70 |
-
"TurkuNLP/bert-base-finnish-cased-v1": 512,
|
71 |
-
"TurkuNLP/bert-base-finnish-uncased-v1": 512,
|
72 |
-
"wietsedv/bert-base-dutch-cased": 512,
|
73 |
-
}
|
74 |
-
|
75 |
-
PRETRAINED_INIT_CONFIGURATION = {
|
76 |
-
"bert-base-uncased": {"do_lower_case": True},
|
77 |
-
"bert-large-uncased": {"do_lower_case": True},
|
78 |
-
"bert-base-cased": {"do_lower_case": False},
|
79 |
-
"bert-large-cased": {"do_lower_case": False},
|
80 |
-
"bert-base-multilingual-uncased": {"do_lower_case": True},
|
81 |
-
"bert-base-multilingual-cased": {"do_lower_case": False},
|
82 |
-
"bert-base-chinese": {"do_lower_case": False},
|
83 |
-
"bert-base-german-cased": {"do_lower_case": False},
|
84 |
-
"bert-large-uncased-whole-word-masking": {"do_lower_case": True},
|
85 |
-
"bert-large-cased-whole-word-masking": {"do_lower_case": False},
|
86 |
-
"bert-large-uncased-whole-word-masking-finetuned-squad": {"do_lower_case": True},
|
87 |
-
"bert-large-cased-whole-word-masking-finetuned-squad": {"do_lower_case": False},
|
88 |
-
"bert-base-cased-finetuned-mrpc": {"do_lower_case": False},
|
89 |
-
"bert-base-german-dbmdz-cased": {"do_lower_case": False},
|
90 |
-
"bert-base-german-dbmdz-uncased": {"do_lower_case": True},
|
91 |
-
"TurkuNLP/bert-base-finnish-cased-v1": {"do_lower_case": False},
|
92 |
-
"TurkuNLP/bert-base-finnish-uncased-v1": {"do_lower_case": True},
|
93 |
-
"wietsedv/bert-base-dutch-cased": {"do_lower_case": False},
|
94 |
-
}
|
95 |
-
|
96 |
-
|
97 |
-
def load_vocab(vocab_file):
|
98 |
-
"""Loads a vocabulary file into a dictionary."""
|
99 |
-
vocab = collections.OrderedDict()
|
100 |
-
with open(vocab_file, "r", encoding="utf-8") as reader:
|
101 |
-
tokens = reader.readlines()
|
102 |
-
for index, token in enumerate(tokens):
|
103 |
-
token = token.rstrip("\n")
|
104 |
-
vocab[token] = index
|
105 |
-
return vocab
|
106 |
-
|
107 |
-
|
108 |
-
def whitespace_tokenize(text):
|
109 |
-
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
110 |
-
text = text.strip()
|
111 |
-
if not text:
|
112 |
-
return []
|
113 |
-
tokens = text.split()
|
114 |
-
return tokens
|
115 |
-
|
116 |
-
|
117 |
-
class BertTokenizer(PreTrainedTokenizer):
|
118 |
-
r"""
|
119 |
-
Construct a BERT tokenizer. Based on WordPiece.
|
120 |
-
|
121 |
-
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
122 |
-
this superclass for more information regarding those methods.
|
123 |
-
|
124 |
-
Args:
|
125 |
-
vocab_file (`str`):
|
126 |
-
File containing the vocabulary.
|
127 |
-
do_lower_case (`bool`, *optional*, defaults to `True`):
|
128 |
-
Whether or not to lowercase the input when tokenizing.
|
129 |
-
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
130 |
-
Whether or not to do basic tokenization before WordPiece.
|
131 |
-
never_split (`Iterable`, *optional*):
|
132 |
-
Collection of tokens which will never be split during tokenization. Only has an effect when
|
133 |
-
`do_basic_tokenize=True`
|
134 |
-
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
135 |
-
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
136 |
-
token instead.
|
137 |
-
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
138 |
-
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
139 |
-
sequence classification or for a text and a question for question answering. It is also used as the last
|
140 |
-
token of a sequence built with special tokens.
|
141 |
-
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
142 |
-
The token used for padding, for example when batching sequences of different lengths.
|
143 |
-
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
144 |
-
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
145 |
-
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
146 |
-
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
147 |
-
The token used for masking values. This is the token used when training this model with masked language
|
148 |
-
modeling. This is the token which the model will try to predict.
|
149 |
-
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
150 |
-
Whether or not to tokenize Chinese characters.
|
151 |
-
|
152 |
-
This should likely be deactivated for Japanese (see this
|
153 |
-
[issue](https://github.com/huggingface/transformers/issues/328)).
|
154 |
-
strip_accents (`bool`, *optional*):
|
155 |
-
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
156 |
-
value for `lowercase` (as in the original BERT).
|
157 |
-
"""
|
158 |
-
|
159 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
160 |
-
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
161 |
-
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
162 |
-
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
163 |
-
|
164 |
-
def __init__(
|
165 |
-
self,
|
166 |
-
vocab_file,
|
167 |
-
do_lower_case=True,
|
168 |
-
do_basic_tokenize=True,
|
169 |
-
never_split=None,
|
170 |
-
unk_token="[UNK]",
|
171 |
-
sep_token="[SEP]",
|
172 |
-
pad_token="[PAD]",
|
173 |
-
cls_token="[CLS]",
|
174 |
-
mask_token="[MASK]",
|
175 |
-
tokenize_chinese_chars=True,
|
176 |
-
strip_accents=None,
|
177 |
-
**kwargs
|
178 |
-
):
|
179 |
-
super().__init__(
|
180 |
-
do_lower_case=do_lower_case,
|
181 |
-
do_basic_tokenize=do_basic_tokenize,
|
182 |
-
never_split=never_split,
|
183 |
-
unk_token=unk_token,
|
184 |
-
sep_token=sep_token,
|
185 |
-
pad_token=pad_token,
|
186 |
-
cls_token=cls_token,
|
187 |
-
mask_token=mask_token,
|
188 |
-
tokenize_chinese_chars=tokenize_chinese_chars,
|
189 |
-
strip_accents=strip_accents,
|
190 |
-
**kwargs,
|
191 |
-
)
|
192 |
-
|
193 |
-
if not os.path.isfile(vocab_file):
|
194 |
-
raise ValueError(
|
195 |
-
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained "
|
196 |
-
"model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
197 |
-
)
|
198 |
-
self.vocab = load_vocab(vocab_file)
|
199 |
-
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
200 |
-
self.do_basic_tokenize = do_basic_tokenize
|
201 |
-
if do_basic_tokenize:
|
202 |
-
self.basic_tokenizer = BasicTokenizer(
|
203 |
-
do_lower_case=do_lower_case,
|
204 |
-
never_split=never_split,
|
205 |
-
tokenize_chinese_chars=tokenize_chinese_chars,
|
206 |
-
strip_accents=strip_accents,
|
207 |
-
)
|
208 |
-
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=self.unk_token)
|
209 |
-
|
210 |
-
@property
|
211 |
-
def do_lower_case(self):
|
212 |
-
return self.basic_tokenizer.do_lower_case
|
213 |
-
|
214 |
-
@property
|
215 |
-
def vocab_size(self):
|
216 |
-
return len(self.vocab)
|
217 |
-
|
218 |
-
def get_vocab(self):
|
219 |
-
return dict(self.vocab, **self.added_tokens_encoder)
|
220 |
-
|
221 |
-
def _tokenize(self, text):
|
222 |
-
split_tokens = []
|
223 |
-
if self.do_basic_tokenize:
|
224 |
-
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
|
225 |
-
|
226 |
-
# If the token is part of the never_split set
|
227 |
-
if token in self.basic_tokenizer.never_split:
|
228 |
-
split_tokens.append(token)
|
229 |
-
else:
|
230 |
-
split_tokens += self.wordpiece_tokenizer.tokenize(token)
|
231 |
-
else:
|
232 |
-
split_tokens = self.wordpiece_tokenizer.tokenize(text)
|
233 |
-
return split_tokens
|
234 |
-
|
235 |
-
def _convert_token_to_id(self, token):
|
236 |
-
"""Converts a token (str) in an id using the vocab."""
|
237 |
-
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
238 |
-
|
239 |
-
def _convert_id_to_token(self, index):
|
240 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
241 |
-
return self.ids_to_tokens.get(index, self.unk_token)
|
242 |
-
|
243 |
-
def convert_tokens_to_string(self, tokens):
|
244 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
245 |
-
out_string = " ".join(tokens).replace(" ##", "").strip()
|
246 |
-
return out_string
|
247 |
-
|
248 |
-
def build_inputs_with_special_tokens(
|
249 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
250 |
-
) -> List[int]:
|
251 |
-
"""
|
252 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
253 |
-
adding special tokens. A BERT sequence has the following format:
|
254 |
-
|
255 |
-
- single sequence: `[CLS] X [SEP]`
|
256 |
-
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
257 |
-
|
258 |
-
Args:
|
259 |
-
token_ids_0 (`List[int]`):
|
260 |
-
List of IDs to which the special tokens will be added.
|
261 |
-
token_ids_1 (`List[int]`, *optional*):
|
262 |
-
Optional second list of IDs for sequence pairs.
|
263 |
-
|
264 |
-
Returns:
|
265 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
266 |
-
"""
|
267 |
-
if token_ids_1 is None:
|
268 |
-
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
269 |
-
cls = [self.cls_token_id]
|
270 |
-
sep = [self.sep_token_id]
|
271 |
-
return cls + token_ids_0 + sep + token_ids_1 + sep
|
272 |
-
|
273 |
-
def get_special_tokens_mask(
|
274 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
275 |
-
) -> List[int]:
|
276 |
-
"""
|
277 |
-
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
278 |
-
special tokens using the tokenizer `prepare_for_model` method.
|
279 |
-
|
280 |
-
Args:
|
281 |
-
token_ids_0 (`List[int]`):
|
282 |
-
List of IDs.
|
283 |
-
token_ids_1 (`List[int]`, *optional*):
|
284 |
-
Optional second list of IDs for sequence pairs.
|
285 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
286 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
287 |
-
|
288 |
-
Returns:
|
289 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
290 |
-
"""
|
291 |
-
|
292 |
-
if already_has_special_tokens:
|
293 |
-
return super().get_special_tokens_mask(
|
294 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
295 |
-
)
|
296 |
-
|
297 |
-
if token_ids_1 is not None:
|
298 |
-
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
299 |
-
return [1] + ([0] * len(token_ids_0)) + [1]
|
300 |
-
|
301 |
-
def create_token_type_ids_from_sequences(
|
302 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
303 |
-
) -> List[int]:
|
304 |
-
"""
|
305 |
-
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
306 |
-
pair mask has the following format:
|
307 |
-
|
308 |
-
```
|
309 |
-
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
310 |
-
| first sequence | second sequence |
|
311 |
-
```
|
312 |
-
|
313 |
-
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
314 |
-
|
315 |
-
Args:
|
316 |
-
token_ids_0 (`List[int]`):
|
317 |
-
List of IDs.
|
318 |
-
token_ids_1 (`List[int]`, *optional*):
|
319 |
-
Optional second list of IDs for sequence pairs.
|
320 |
-
|
321 |
-
Returns:
|
322 |
-
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
323 |
-
"""
|
324 |
-
sep = [self.sep_token_id]
|
325 |
-
cls = [self.cls_token_id]
|
326 |
-
if token_ids_1 is None:
|
327 |
-
return len(cls + token_ids_0 + sep) * [0]
|
328 |
-
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
329 |
-
|
330 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
331 |
-
index = 0
|
332 |
-
if os.path.isdir(save_directory):
|
333 |
-
vocab_file = os.path.join(
|
334 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
335 |
-
)
|
336 |
-
else:
|
337 |
-
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
338 |
-
with open(vocab_file, "w", encoding="utf-8") as writer:
|
339 |
-
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
340 |
-
if index != token_index:
|
341 |
-
logger.warning(
|
342 |
-
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
343 |
-
" Please check that the vocabulary is not corrupted!"
|
344 |
-
)
|
345 |
-
index = token_index
|
346 |
-
writer.write(token + "\n")
|
347 |
-
index += 1
|
348 |
-
return (vocab_file,)
|
349 |
-
|
350 |
-
|
351 |
-
class BasicTokenizer(object):
|
352 |
-
"""
|
353 |
-
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
354 |
-
|
355 |
-
Args:
|
356 |
-
do_lower_case (`bool`, *optional*, defaults to `True`):
|
357 |
-
Whether or not to lowercase the input when tokenizing.
|
358 |
-
never_split (`Iterable`, *optional*):
|
359 |
-
Collection of tokens which will never be split during tokenization. Only has an effect when
|
360 |
-
`do_basic_tokenize=True`
|
361 |
-
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
362 |
-
Whether or not to tokenize Chinese characters.
|
363 |
-
|
364 |
-
This should likely be deactivated for Japanese (see this
|
365 |
-
[issue](https://github.com/huggingface/transformers/issues/328)).
|
366 |
-
strip_accents: (`bool`, *optional*):
|
367 |
-
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
368 |
-
value for `lowercase` (as in the original BERT).
|
369 |
-
"""
|
370 |
-
|
371 |
-
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
|
372 |
-
if never_split is None:
|
373 |
-
never_split = []
|
374 |
-
self.do_lower_case = do_lower_case
|
375 |
-
self.never_split = set(never_split)
|
376 |
-
self.tokenize_chinese_chars = tokenize_chinese_chars
|
377 |
-
self.strip_accents = strip_accents
|
378 |
-
|
379 |
-
def tokenize(self, text, never_split=None):
|
380 |
-
"""
|
381 |
-
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
382 |
-
WordPieceTokenizer.
|
383 |
-
|
384 |
-
Args:
|
385 |
-
never_split (`List[str]`, *optional*)
|
386 |
-
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
387 |
-
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
388 |
-
"""
|
389 |
-
# union() returns a new set by concatenating the two sets.
|
390 |
-
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
391 |
-
text = self._clean_text(text)
|
392 |
-
|
393 |
-
# This was added on November 1st, 2018 for the multilingual and Chinese
|
394 |
-
# models. This is also applied to the English models now, but it doesn't
|
395 |
-
# matter since the English models were not trained on any Chinese data
|
396 |
-
# and generally don't have any Chinese data in them (there are Chinese
|
397 |
-
# characters in the vocabulary because Wikipedia does have some Chinese
|
398 |
-
# words in the English Wikipedia.).
|
399 |
-
if self.tokenize_chinese_chars:
|
400 |
-
text = self._tokenize_chinese_chars(text)
|
401 |
-
orig_tokens = whitespace_tokenize(text)
|
402 |
-
split_tokens = []
|
403 |
-
for token in orig_tokens:
|
404 |
-
if token not in never_split:
|
405 |
-
if self.do_lower_case:
|
406 |
-
token = token.lower()
|
407 |
-
if self.strip_accents is not False:
|
408 |
-
token = self._run_strip_accents(token)
|
409 |
-
elif self.strip_accents:
|
410 |
-
token = self._run_strip_accents(token)
|
411 |
-
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
412 |
-
|
413 |
-
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
414 |
-
return output_tokens
|
415 |
-
|
416 |
-
def _run_strip_accents(self, text):
|
417 |
-
"""Strips accents from a piece of text."""
|
418 |
-
text = unicodedata.normalize("NFD", text)
|
419 |
-
output = []
|
420 |
-
for char in text:
|
421 |
-
cat = unicodedata.category(char)
|
422 |
-
if cat == "Mn":
|
423 |
-
continue
|
424 |
-
output.append(char)
|
425 |
-
return "".join(output)
|
426 |
-
|
427 |
-
def _run_split_on_punc(self, text, never_split=None):
|
428 |
-
"""Splits punctuation on a piece of text."""
|
429 |
-
if never_split is not None and text in never_split:
|
430 |
-
return [text]
|
431 |
-
chars = list(text)
|
432 |
-
i = 0
|
433 |
-
start_new_word = True
|
434 |
-
output = []
|
435 |
-
while i < len(chars):
|
436 |
-
char = chars[i]
|
437 |
-
if _is_punctuation(char):
|
438 |
-
output.append([char])
|
439 |
-
start_new_word = True
|
440 |
-
else:
|
441 |
-
if start_new_word:
|
442 |
-
output.append([])
|
443 |
-
start_new_word = False
|
444 |
-
output[-1].append(char)
|
445 |
-
i += 1
|
446 |
-
|
447 |
-
return ["".join(x) for x in output]
|
448 |
-
|
449 |
-
def _tokenize_chinese_chars(self, text):
|
450 |
-
"""Adds whitespace around any CJK character."""
|
451 |
-
output = []
|
452 |
-
for char in text:
|
453 |
-
cp = ord(char)
|
454 |
-
if self._is_chinese_char(cp):
|
455 |
-
output.append(" ")
|
456 |
-
output.append(char)
|
457 |
-
output.append(" ")
|
458 |
-
else:
|
459 |
-
output.append(char)
|
460 |
-
return "".join(output)
|
461 |
-
|
462 |
-
def _is_chinese_char(self, cp):
|
463 |
-
"""Checks whether CP is the codepoint of a CJK character."""
|
464 |
-
# This defines a "chinese character" as anything in the CJK Unicode block:
|
465 |
-
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
466 |
-
#
|
467 |
-
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
468 |
-
# despite its name. The modern Korean Hangul alphabet is a different block,
|
469 |
-
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
470 |
-
# space-separated words, so they are not treated specially and handled
|
471 |
-
# like the all of the other languages.
|
472 |
-
if (
|
473 |
-
(cp >= 0x4E00 and cp <= 0x9FFF)
|
474 |
-
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
475 |
-
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
476 |
-
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
477 |
-
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
478 |
-
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
479 |
-
or (cp >= 0xF900 and cp <= 0xFAFF)
|
480 |
-
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
481 |
-
): #
|
482 |
-
return True
|
483 |
-
|
484 |
-
return False
|
485 |
-
|
486 |
-
def _clean_text(self, text):
|
487 |
-
"""Performs invalid character removal and whitespace cleanup on text."""
|
488 |
-
output = []
|
489 |
-
for char in text:
|
490 |
-
cp = ord(char)
|
491 |
-
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
492 |
-
continue
|
493 |
-
if _is_whitespace(char):
|
494 |
-
output.append(" ")
|
495 |
-
else:
|
496 |
-
output.append(char)
|
497 |
-
return "".join(output)
|
498 |
-
|
499 |
-
|
500 |
-
class WordpieceTokenizer(object):
|
501 |
-
"""Runs WordPiece tokenization."""
|
502 |
-
|
503 |
-
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
504 |
-
self.vocab = vocab
|
505 |
-
self.unk_token = unk_token
|
506 |
-
self.max_input_chars_per_word = max_input_chars_per_word
|
507 |
-
|
508 |
-
def tokenize(self, text):
|
509 |
-
"""
|
510 |
-
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
511 |
-
tokenization using the given vocabulary.
|
512 |
-
|
513 |
-
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
514 |
-
|
515 |
-
Args:
|
516 |
-
text: A single token or whitespace separated tokens. This should have
|
517 |
-
already been passed through *BasicTokenizer*.
|
518 |
-
|
519 |
-
Returns:
|
520 |
-
A list of wordpiece tokens.
|
521 |
-
"""
|
522 |
-
|
523 |
-
output_tokens = []
|
524 |
-
for token in whitespace_tokenize(text):
|
525 |
-
chars = list(token)
|
526 |
-
if len(chars) > self.max_input_chars_per_word:
|
527 |
-
output_tokens.append(self.unk_token)
|
528 |
-
continue
|
529 |
-
|
530 |
-
is_bad = False
|
531 |
-
start = 0
|
532 |
-
sub_tokens = []
|
533 |
-
while start < len(chars):
|
534 |
-
end = len(chars)
|
535 |
-
cur_substr = None
|
536 |
-
while start < end:
|
537 |
-
substr = "".join(chars[start:end])
|
538 |
-
if start > 0:
|
539 |
-
substr = "##" + substr
|
540 |
-
if substr in self.vocab:
|
541 |
-
cur_substr = substr
|
542 |
-
break
|
543 |
-
end -= 1
|
544 |
-
if cur_substr is None:
|
545 |
-
is_bad = True
|
546 |
-
break
|
547 |
-
sub_tokens.append(cur_substr)
|
548 |
-
start = end
|
549 |
-
|
550 |
-
if is_bad:
|
551 |
-
output_tokens.append(self.unk_token)
|
552 |
-
else:
|
553 |
-
output_tokens.extend(sub_tokens)
|
554 |
-
return output_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|