michaelfeil commited on
Commit
523bf99
1 Parent(s): 47539a2

Upload bigcode/starcoderbase ctranslate fp16 weights

Browse files
README.md ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: text-generation
3
+ inference: true
4
+ widget:
5
+ - text: 'def print_hello_world():'
6
+ example_title: Hello world
7
+ group: Python
8
+ license: bigcode-openrail-m
9
+ datasets:
10
+ - bigcode/the-stack-dedup
11
+ metrics:
12
+ - code_eval
13
+ library_name: transformers
14
+ tags:
15
+ - ctranslate2
16
+ - int8
17
+ - float16
18
+ - code
19
+ model-index:
20
+ - name: StarCoderBase
21
+ results:
22
+ - task:
23
+ type: text-generation
24
+ dataset:
25
+ type: openai_humaneval
26
+ name: HumanEval
27
+ metrics:
28
+ - name: pass@1
29
+ type: pass@1
30
+ value: 0.304
31
+ verified: false
32
+ - task:
33
+ type: text-generation
34
+ dataset:
35
+ type: mbpp
36
+ name: MBPP
37
+ metrics:
38
+ - name: pass@1
39
+ type: pass@1
40
+ value: 0.49
41
+ verified: false
42
+ - task:
43
+ type: text-generation
44
+ dataset:
45
+ type: ds1000
46
+ name: DS-1000 (Overall Completion)
47
+ metrics:
48
+ - name: pass@1
49
+ type: pass@1
50
+ value: 0.238
51
+ verified: false
52
+ - task:
53
+ type: text-generation
54
+ dataset:
55
+ type: nuprl/MultiPL-E
56
+ name: MultiPL-HumanEval (C++)
57
+ metrics:
58
+ - name: pass@1
59
+ type: pass@1
60
+ value: 0.3056
61
+ verified: false
62
+ - task:
63
+ type: text-generation
64
+ dataset:
65
+ type: nuprl/MultiPL-E
66
+ name: MultiPL-HumanEval (C#)
67
+ metrics:
68
+ - name: pass@1
69
+ type: pass@1
70
+ value: 0.2056
71
+ verified: false
72
+ - task:
73
+ type: text-generation
74
+ dataset:
75
+ type: nuprl/MultiPL-E
76
+ name: MultiPL-HumanEval (D)
77
+ metrics:
78
+ - name: pass@1
79
+ type: pass@1
80
+ value: 0.1001
81
+ verified: false
82
+ - task:
83
+ type: text-generation
84
+ dataset:
85
+ type: nuprl/MultiPL-E
86
+ name: MultiPL-HumanEval (Go)
87
+ metrics:
88
+ - name: pass@1
89
+ type: pass@1
90
+ value: 0.2147
91
+ verified: false
92
+ - task:
93
+ type: text-generation
94
+ dataset:
95
+ type: nuprl/MultiPL-E
96
+ name: MultiPL-HumanEval (Java)
97
+ metrics:
98
+ - name: pass@1
99
+ type: pass@1
100
+ value: 0.2853
101
+ verified: false
102
+ - task:
103
+ type: text-generation
104
+ dataset:
105
+ type: nuprl/MultiPL-E
106
+ name: MultiPL-HumanEval (Julia)
107
+ metrics:
108
+ - name: pass@1
109
+ type: pass@1
110
+ value: 0.2109
111
+ verified: false
112
+ - task:
113
+ type: text-generation
114
+ dataset:
115
+ type: nuprl/MultiPL-E
116
+ name: MultiPL-HumanEval (JavaScript)
117
+ metrics:
118
+ - name: pass@1
119
+ type: pass@1
120
+ value: 0.317
121
+ verified: false
122
+ - task:
123
+ type: text-generation
124
+ dataset:
125
+ type: nuprl/MultiPL-E
126
+ name: MultiPL-HumanEval (Lua)
127
+ metrics:
128
+ - name: pass@1
129
+ type: pass@1
130
+ value: 0.2661
131
+ verified: false
132
+ - task:
133
+ type: text-generation
134
+ dataset:
135
+ type: nuprl/MultiPL-E
136
+ name: MultiPL-HumanEval (PHP)
137
+ metrics:
138
+ - name: pass@1
139
+ type: pass@1
140
+ value: 0.2675
141
+ verified: false
142
+ - task:
143
+ type: text-generation
144
+ dataset:
145
+ type: nuprl/MultiPL-E
146
+ name: MultiPL-HumanEval (Perl)
147
+ metrics:
148
+ - name: pass@1
149
+ type: pass@1
150
+ value: 0.1632
151
+ verified: false
152
+ - task:
153
+ type: text-generation
154
+ dataset:
155
+ type: nuprl/MultiPL-E
156
+ name: MultiPL-HumanEval (Python)
157
+ metrics:
158
+ - name: pass@1
159
+ type: pass@1
160
+ value: 0.3035
161
+ verified: false
162
+ - task:
163
+ type: text-generation
164
+ dataset:
165
+ type: nuprl/MultiPL-E
166
+ name: MultiPL-HumanEval (R)
167
+ metrics:
168
+ - name: pass@1
169
+ type: pass@1
170
+ value: 0.1018
171
+ verified: false
172
+ - task:
173
+ type: text-generation
174
+ dataset:
175
+ type: nuprl/MultiPL-E
176
+ name: MultiPL-HumanEval (Ruby)
177
+ metrics:
178
+ - name: pass@1
179
+ type: pass@1
180
+ value: 0.1725
181
+ verified: false
182
+ - task:
183
+ type: text-generation
184
+ dataset:
185
+ type: nuprl/MultiPL-E
186
+ name: MultiPL-HumanEval (Racket)
187
+ metrics:
188
+ - name: pass@1
189
+ type: pass@1
190
+ value: 0.1177
191
+ verified: false
192
+ - task:
193
+ type: text-generation
194
+ dataset:
195
+ type: nuprl/MultiPL-E
196
+ name: MultiPL-HumanEval (Rust)
197
+ metrics:
198
+ - name: pass@1
199
+ type: pass@1
200
+ value: 0.2446
201
+ verified: false
202
+ - task:
203
+ type: text-generation
204
+ dataset:
205
+ type: nuprl/MultiPL-E
206
+ name: MultiPL-HumanEval (Scala)
207
+ metrics:
208
+ - name: pass@1
209
+ type: pass@1
210
+ value: 0.2879
211
+ verified: false
212
+ - task:
213
+ type: text-generation
214
+ dataset:
215
+ type: nuprl/MultiPL-E
216
+ name: MultiPL-HumanEval (Bash)
217
+ metrics:
218
+ - name: pass@1
219
+ type: pass@1
220
+ value: 0.1102
221
+ verified: false
222
+ - task:
223
+ type: text-generation
224
+ dataset:
225
+ type: nuprl/MultiPL-E
226
+ name: MultiPL-HumanEval (Swift)
227
+ metrics:
228
+ - name: pass@1
229
+ type: pass@1
230
+ value: 0.1674
231
+ verified: false
232
+ - task:
233
+ type: text-generation
234
+ dataset:
235
+ type: nuprl/MultiPL-E
236
+ name: MultiPL-HumanEval (TypeScript)
237
+ metrics:
238
+ - name: pass@1
239
+ type: pass@1
240
+ value: 0.3215
241
+ verified: false
242
+ extra_gated_prompt: >-
243
+ ## Model License Agreement
244
+
245
+ Please read the BigCode [OpenRAIL-M
246
+ license](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement)
247
+ agreement before accepting it.
248
+
249
+ extra_gated_fields:
250
+ I accept the above license agreement, and will use the Model complying with the set of use restrictions and sharing requirements: checkbox
251
+ ---
252
+ # # Fast-Inference with Ctranslate2
253
+ Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
254
+
255
+ quantized version of [bigcode/starcoderbase](https://huggingface.co/bigcode/starcoderbase)
256
+ ```bash
257
+ pip install hf-hub-ctranslate2>=2.0.8
258
+ ```
259
+ Converted on 2023-05-23 using
260
+ ```
261
+ ct2-transformers-converter --model bigcode/starcoderbase --output_dir /home/michael/tmp-ct2fast-starcoderbase --force --copy_files merges.txt tokenizer.json README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization float16
262
+ ```
263
+
264
+ Checkpoint compatible to [ctranslate2>=3.13.0](https://github.com/OpenNMT/CTranslate2) and [hf-hub-ctranslate2>=2.0.6](https://github.com/michaelfeil/hf-hub-ctranslate2)
265
+ - `compute_type=int8_float16` for `device="cuda"`
266
+ - `compute_type=int8` for `device="cpu"`
267
+
268
+ ```python
269
+ from hf_hub_ctranslate2 import TranslatorCT2fromHfHub, GeneratorCT2fromHfHub
270
+ from transformers import AutoTokenizer
271
+
272
+ model_name = "michaelfeil/ct2fast-starcoderbase"
273
+ # use either TranslatorCT2fromHfHub or GeneratorCT2fromHfHub here, depending on model.
274
+ model = GeneratorCT2fromHfHub(
275
+ # load in int8 on CUDA
276
+ model_name_or_path=model_name,
277
+ device="cuda",
278
+ compute_type="int8_float16",
279
+ # tokenizer=AutoTokenizer.from_pretrained("bigcode/starcoderbase")
280
+ )
281
+ outputs = model.generate(
282
+ text=["How do you call a fast Flan-ingo?", "User: How are you doing? Bot:"],
283
+ max_length=64
284
+ )
285
+ print(outputs)
286
+ ```
287
+
288
+ # Licence and other remarks:
289
+ This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
290
+
291
+ # Original description
292
+
293
+
294
+
295
+ # StarCoderBase
296
+
297
+ ![banner](https://huggingface.co/datasets/bigcode/admin/resolve/main/StarCoderBanner.png)
298
+
299
+ Play with the model on the [StarCoder Playground](https://huggingface.co/spaces/bigcode/bigcode-playground).
300
+
301
+ ## Table of Contents
302
+
303
+ 1. [Model Summary](##model-summary)
304
+ 2. [Use](##use)
305
+ 3. [Limitations](##limitations)
306
+ 4. [Training](##training)
307
+ 5. [License](##license)
308
+ 6. [Citation](##citation)
309
+
310
+ ## Model Summary
311
+
312
+ The StarCoderBase models are 15.5B parameter models trained on 80+ programming languages from [The Stack (v1.2)](https://huggingface.co/datasets/bigcode/the-stack), with opt-out requests excluded. The model uses [Multi Query Attention](https://arxiv.org/abs/1911.02150), [a context window of 8192 tokens](https://arxiv.org/abs/2205.14135), and was trained using the [Fill-in-the-Middle objective](https://arxiv.org/abs/2207.14255) on 1 trillion tokens.
313
+
314
+ - **Repository:** [bigcode/Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
315
+ - **Project Website:** [bigcode-project.org](https://www.bigcode-project.org)
316
+ - **Paper:** [💫StarCoder: May the source be with you!](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view)
317
+ - **Point of Contact:** [contact@bigcode-project.org](mailto:contact@bigcode-project.org)
318
+ - **Languages:** 80+ Programming languages
319
+
320
+
321
+ ## Use
322
+
323
+ ### Intended use
324
+
325
+ The model was trained on GitHub code. As such it is _not_ an instruction model and commands like "Write a function that computes the square root." do not work well. However, by using the [Tech Assistant prompt](https://huggingface.co/datasets/bigcode/ta-prompt) you can turn it into a capable technical assistant.
326
+
327
+ **Feel free to share your generations in the Community tab!**
328
+
329
+ ### Generation
330
+ ```python
331
+ # pip install -q transformers
332
+ from transformers import AutoModelForCausalLM, AutoTokenizer
333
+
334
+ checkpoint = "bigcode/starcoderbase"
335
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
336
+
337
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
338
+ model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True).to(device)
339
+
340
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
341
+ outputs = model.generate(inputs)
342
+ print(tokenizer.decode(outputs[0]))
343
+ ```
344
+
345
+ ### Fill-in-the-middle
346
+ Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
347
+
348
+ ```python
349
+ input_text = "<fim_prefix>def print_hello_world():\n <fim_suffix>\n print('Hello world!')<fim_middle>"
350
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
351
+ outputs = model.generate(inputs)
352
+ print(tokenizer.decode(outputs[0]))
353
+ ```
354
+
355
+ ### Attribution & Other Requirements
356
+
357
+ The pretraining dataset of the model was filtered for permissive licenses only. Nevertheless, the model can generate source code verbatim from the dataset. The code's license might require attribution and/or other specific requirements that must be respected. We provide a [search index](https://huggingface.co/spaces/bigcode/starcoder-search) that let's you search through the pretraining data to identify where generated code came from and apply the proper attribution to your code.
358
+
359
+ # Limitations
360
+
361
+ The model has been trained on source code from 80+ programming languages. The predominant language in source is English although other languages are also present. As such the model is capable to generate code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations.
362
+
363
+ # Training
364
+
365
+ ## Model
366
+
367
+ - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
368
+ - **Pretraining steps:** 250k
369
+ - **Pretraining tokens:** 1 trillion
370
+ - **Precision:** bfloat16
371
+
372
+ ## Hardware
373
+
374
+ - **GPUs:** 512 Tesla A100
375
+ - **Training time:** 24 days
376
+
377
+ ## Software
378
+
379
+ - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
380
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
381
+ - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
382
+
383
+ # License
384
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).
385
+ # Citation
386
+ ```
387
+ @article{li2023starcoder,
388
+ title={StarCoder: may the source be with you!},
389
+ author={Raymond Li and Loubna Ben Allal and Yangtian Zi and Niklas Muennighoff and Denis Kocetkov and Chenghao Mou and Marc Marone and Christopher Akiki and Jia Li and Jenny Chim and Qian Liu and Evgenii Zheltonozhskii and Terry Yue Zhuo and Thomas Wang and Olivier Dehaene and Mishig Davaadorj and Joel Lamy-Poirier and João Monteiro and Oleh Shliazhko and Nicolas Gontier and Nicholas Meade and Armel Zebaze and Ming-Ho Yee and Logesh Kumar Umapathi and Jian Zhu and Benjamin Lipkin and Muhtasham Oblokulov and Zhiruo Wang and Rudra Murthy and Jason Stillerman and Siva Sankalp Patel and Dmitry Abulkhanov and Marco Zocca and Manan Dey and Zhihan Zhang and Nour Fahmy and Urvashi Bhattacharyya and Wenhao Yu and Swayam Singh and Sasha Luccioni and Paulo Villegas and Maxim Kunakov and Fedor Zhdanov and Manuel Romero and Tony Lee and Nadav Timor and Jennifer Ding and Claire Schlesinger and Hailey Schoelkopf and Jan Ebert and Tri Dao and Mayank Mishra and Alex Gu and Jennifer Robinson and Carolyn Jane Anderson and Brendan Dolan-Gavitt and Danish Contractor and Siva Reddy and Daniel Fried and Dzmitry Bahdanau and Yacine Jernite and Carlos Muñoz Ferrandis and Sean Hughes and Thomas Wolf and Arjun Guha and Leandro von Werra and Harm de Vries},
390
+ year={2023},
391
+ eprint={2305.06161},
392
+ archivePrefix={arXiv},
393
+ primaryClass={cs.CL}
394
+ }
395
+ ```
config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "eos_token": "<|endoftext|>",
4
+ "unk_token": "<|endoftext|>"
5
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 0,
5
+ "transformers_version": "4.27.0.dev0"
6
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86e0d4c09165704dc15e954e490abfec6017a7334f15aa2477c7f3811e7f9203
3
+ size 36949870923
special_tokens_map.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<fim_prefix>",
5
+ "<fim_middle>",
6
+ "<fim_suffix>",
7
+ "<fim_pad>",
8
+ "<filename>",
9
+ "<gh_stars>",
10
+ "<issue_start>",
11
+ "<issue_comment>",
12
+ "<issue_closed>",
13
+ "<jupyter_start>",
14
+ "<jupyter_text>",
15
+ "<jupyter_code>",
16
+ "<jupyter_output>",
17
+ "<empty_output>",
18
+ "<commit_before>",
19
+ "<commit_msg>",
20
+ "<commit_after>",
21
+ "<reponame>"
22
+ ],
23
+ "bos_token": "<|endoftext|>",
24
+ "eos_token": "<|endoftext|>",
25
+ "unk_token": "<|endoftext|>"
26
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "additional_special_tokens": [
4
+ "<|endoftext|>",
5
+ "<fim_prefix>",
6
+ "<fim_middle>",
7
+ "<fim_suffix>",
8
+ "<fim_pad>",
9
+ "<filename>",
10
+ "<gh_stars>",
11
+ "<issue_start>",
12
+ "<issue_comment>",
13
+ "<issue_closed>",
14
+ "<jupyter_start>",
15
+ "<jupyter_text>",
16
+ "<jupyter_code>",
17
+ "<jupyter_output>",
18
+ "<empty_output>",
19
+ "<commit_before>",
20
+ "<commit_msg>",
21
+ "<commit_after>",
22
+ "<reponame>"
23
+ ],
24
+ "bos_token": "<|endoftext|>",
25
+ "eos_token": "<|endoftext|>",
26
+ "model_max_length": 1000000000000000019884624838656,
27
+ "tokenizer_class": "GPT2Tokenizer",
28
+ "unk_token": "<|endoftext|>",
29
+ "vocab_size": 49152
30
+ }
vocabulary.txt ADDED
The diff for this file is too large to render. See raw diff