mibo222 commited on
Commit
3b7ffce
·
verified ·
1 Parent(s): a7ffd87

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -3
README.md CHANGED
@@ -1,3 +1,45 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ library_name: peft
5
+ tags:
6
+ - image-classification
7
+ - pytorch
8
+ - resnet
9
+ - lora
10
+ - birds
11
+ - cub-200-2011
12
+ - fine-tuning
13
+ - computer-vision
14
+ datasets:
15
+ - cub-200-2011 # 使用 Hugging Face Datasets 库的标识符(如果存在)或自定义名称
16
+ pipeline_tag: image-classification
17
+ widget:
18
+ - src: https://images.unsplash.com/photo-1518992028580-6d57bd80f2dd?ixlib=rb-1.2.1&auto=format&fit=crop&w=600&q=80 # 示例图片 URL
19
+ example_title: Example Bird 1 (e.g., Cardinal)
20
+ - src: https://images.unsplash.com/photo-1552728089-57bdde30beb3?ixlib=rb-1.2.1&auto=format&fit=crop&w=600&q=80 # 示例图片 URL 2
21
+ example_title: Example Bird 2 (e.g., Blue Jay)
22
+ ---
23
+
24
+ # ResNet50 + LoRA for Bird Classification (CUB-200-2011)
25
+
26
+ This repository contains LoRA (Low-Rank Adaptation) adapters fine-tuned on the CUB-200-2011 dataset for bird image classification. These adapters are designed to be applied to a standard `torchvision.models.resnet50` base model.
27
+
28
+ ## Model Details
29
+
30
+ * **Base Model:** `torchvision.models.resnet50` (pre-trained on ImageNet).
31
+ * **Fine-tuning Method:** Low-Rank Adaptation (LoRA) using the `peft` library.
32
+ * **Dataset:** [Caltech-UCSD Birds-200-2011 (CUB-200-2011)](https://data.caltech.edu/records/65de6-vp158)
33
+ * **Number of Classes:** 200 bird species.
34
+ * **LoRA Configuration:**
35
+ * Rank (`r`): 8 (as used in training, please verify/update)
36
+ * Alpha (`lora_alpha`): 16 (as used in training, please verify/update)
37
+ * Target Modules: ["fc", "conv1", "layer4.0.conv1"] (Please list the actual modules targeted during training)
38
+ * Dropout: 0.05
39
+ * Bias: "none"
40
+
41
+ ## How to Use
42
+
43
+ First, make sure you have `torch`, `torchvision`, and `peft` installed:
44
+ ```bash
45
+ pip install torch torchvision peft Pillow