all-MiniLM-L6-v2-ds / README.md
mgoin's picture
Update README.md
439627b
---
tags:
- mteb
- deepsparse
model-index:
- name: all-MiniLM-L6-v2-ONNX
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 61.98507462686567
- type: ap
value: 26.55307769885484
- type: f1
value: 56.576554278961936
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 64.75349999999999
- type: ap
value: 60.39143292103214
- type: f1
value: 64.04365859718361
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 29.786
- type: f1
value: 29.084451746695827
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 46.191950998304165
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 36.91234422319347
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 63.47681681237331
- type: mrr
value: 77.08657608934617
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 82.92207792207792
- type: f1
value: 82.94749339753726
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 38.59023213662521
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 32.322412431760064
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 40.56
- type: f1
value: 36.87680162073889
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 61.7084
- type: ap
value: 57.21458607676914
- type: f1
value: 61.02407054427192
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 91.44778841769266
- type: f1
value: 91.13853010701129
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 70.0341997264022
- type: f1
value: 52.81666890250234
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.71553463349025
- type: f1
value: 66.96683401696183
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.38802958977807
- type: f1
value: 74.71954080631626
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 32.54905871377117
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 29.915756420522765
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.79955258185344
- type: mrr
value: 31.804908892048367
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 45.62587554038637
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 53.36681782941832
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.11941318470207
- type: mrr
value: 96.39370705547176
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.78514851485149
- type: cos_sim_ap
value: 94.55063045792447
- type: cos_sim_f1
value: 89.01265822784809
- type: cos_sim_precision
value: 90.15384615384615
- type: cos_sim_recall
value: 87.9
- type: dot_accuracy
value: 99.49405940594059
- type: dot_ap
value: 80.75914927763819
- type: dot_f1
value: 73.77605428986914
- type: dot_precision
value: 71.5898400752587
- type: dot_recall
value: 76.1
- type: euclidean_accuracy
value: 99.75247524752476
- type: euclidean_ap
value: 92.29488639469919
- type: euclidean_f1
value: 87.00155359917142
- type: euclidean_precision
value: 90.22556390977444
- type: euclidean_recall
value: 84
- type: manhattan_accuracy
value: 99.75247524752476
- type: manhattan_ap
value: 92.35450475118803
- type: manhattan_f1
value: 86.98347107438016
- type: manhattan_precision
value: 89.95726495726495
- type: manhattan_recall
value: 84.2
- type: max_accuracy
value: 99.78514851485149
- type: max_ap
value: 94.55063045792447
- type: max_f1
value: 89.01265822784809
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 47.27910276403759
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 34.25294402164424
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 50.76324846631252
- type: mrr
value: 51.476370851370845
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 65.3314
- type: ap
value: 11.750907138159238
- type: f1
value: 50.16451894112558
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 52.4052065647991
- type: f1
value: 52.62055987764154
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 42.377081093709315
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.1151576563152
- type: cos_sim_ap
value: 67.85803861885576
- type: cos_sim_f1
value: 64.08006919560113
- type: cos_sim_precision
value: 60.260283523123405
- type: cos_sim_recall
value: 68.41688654353561
- type: dot_accuracy
value: 78.92352625618406
- type: dot_ap
value: 48.288660712918215
- type: dot_f1
value: 50.88373919874313
- type: dot_precision
value: 40.52236471692211
- type: dot_recall
value: 68.3641160949868
- type: euclidean_accuracy
value: 83.3581689217381
- type: euclidean_ap
value: 65.6113812580966
- type: euclidean_f1
value: 62.50154340041981
- type: euclidean_precision
value: 58.737526108145744
- type: euclidean_recall
value: 66.78100263852242
- type: manhattan_accuracy
value: 83.38797162782382
- type: manhattan_ap
value: 65.46092597860742
- type: manhattan_f1
value: 62.46687545169839
- type: manhattan_precision
value: 57.468971631205676
- type: manhattan_recall
value: 68.41688654353561
- type: max_accuracy
value: 84.1151576563152
- type: max_ap
value: 67.85803861885576
- type: max_f1
value: 64.08006919560113
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.2504754142896
- type: cos_sim_ap
value: 84.70166722958382
- type: cos_sim_f1
value: 76.57057281916886
- type: cos_sim_precision
value: 74.5226643346451
- type: cos_sim_recall
value: 78.73421619956883
- type: dot_accuracy
value: 85.16125276516475
- type: dot_ap
value: 76.68984041722426
- type: dot_f1
value: 71.01665954720207
- type: dot_precision
value: 66.04210805084746
- type: dot_recall
value: 76.8016630736064
- type: euclidean_accuracy
value: 85.97236775720883
- type: euclidean_ap
value: 79.0002713617006
- type: euclidean_f1
value: 70.74245510090724
- type: euclidean_precision
value: 68.14582292930014
- type: euclidean_recall
value: 73.54481059439483
- type: manhattan_accuracy
value: 85.94132029339853
- type: manhattan_ap
value: 78.94101507696199
- type: manhattan_f1
value: 70.58084540348803
- type: manhattan_precision
value: 67.85308326229043
- type: manhattan_recall
value: 73.53711117955035
- type: max_accuracy
value: 88.2504754142896
- type: max_ap
value: 84.70166722958382
- type: max_f1
value: 76.57057281916886
---
# all-MiniLM-L6-v2-ONNX