librarian-bot's picture
Librarian Bot: Add base_model information to model
a691f08
|
raw
history blame
3.99 kB
metadata
tags:
  - generated_from_trainer
base_model: mfreihaut/iab_classification-finetuned-mnli-finetuned-mnli
model-index:
  - name: iab_classification-finetuned-mnli-finetuned-mnli
    results: []

iab_classification-finetuned-mnli-finetuned-mnli

This model is a fine-tuned version of mfreihaut/iab_classification-finetuned-mnli-finetuned-mnli on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8711

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 250 1.5956
0.9361 2.0 500 0.0409
0.9361 3.0 750 2.9853
0.7634 4.0 1000 0.1317
0.7634 5.0 1250 0.4056
0.611 6.0 1500 1.8038
0.611 7.0 1750 0.6305
0.5627 8.0 2000 0.6923
0.5627 9.0 2250 3.7410
0.9863 10.0 2500 2.1912
0.9863 11.0 2750 1.5405
1.0197 12.0 3000 1.9271
1.0197 13.0 3250 1.1741
0.5186 14.0 3500 1.1864
0.5186 15.0 3750 0.7945
0.4042 16.0 4000 1.0645
0.4042 17.0 4250 1.8826
0.3637 18.0 4500 0.3234
0.3637 19.0 4750 0.2641
0.3464 20.0 5000 0.8596
0.3464 21.0 5250 0.5601
0.2449 22.0 5500 0.4543
0.2449 23.0 5750 1.1986
0.2595 24.0 6000 0.3642
0.2595 25.0 6250 1.3606
0.298 26.0 6500 0.8154
0.298 27.0 6750 1.1105
0.1815 28.0 7000 0.7443
0.1815 29.0 7250 0.2616
0.165 30.0 7500 0.5318
0.165 31.0 7750 0.7608
0.1435 32.0 8000 0.9647
0.1435 33.0 8250 1.3749
0.1516 34.0 8500 0.7167
0.1516 35.0 8750 0.5426
0.1359 36.0 9000 0.7225
0.1359 37.0 9250 0.5453
0.1266 38.0 9500 0.4825
0.1266 39.0 9750 0.7271
0.1153 40.0 10000 0.9044
0.1153 41.0 10250 1.0363
0.1175 42.0 10500 0.7987
0.1175 43.0 10750 0.7596
0.1089 44.0 11000 0.8637
0.1089 45.0 11250 0.8327
0.1092 46.0 11500 0.7161
0.1092 47.0 11750 0.7768
0.1068 48.0 12000 0.9059
0.1068 49.0 12250 0.8829
0.1045 50.0 12500 0.8711

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.10.0
  • Datasets 2.5.1
  • Tokenizers 0.12.1