mfarrington's picture
End of training
be4a69d verified
|
raw
history blame
2.39 kB
metadata
base_model: dmis-lab/biobert-base-cased-v1.2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: devicebert-base-cased-v1.0
    results: []

devicebert-base-cased-v1.0

This model is a fine-tuned version of dmis-lab/biobert-base-cased-v1.2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • Precision: 0.9429
  • Recall: 0.9449
  • F1: 0.9439
  • Accuracy: 0.9737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 81 nan 0.9429 0.9449 0.9439 0.9737
No log 2.0 162 nan 0.9198 0.9470 0.9332 0.9615
No log 3.0 243 nan 0.9196 0.9449 0.9321 0.9653
No log 4.0 324 nan 0.9379 0.9280 0.9329 0.9719
No log 5.0 405 nan 0.9245 0.9343 0.9294 0.9690
No log 6.0 486 nan 0.9450 0.9470 0.9460 0.9747
0.0945 7.0 567 nan 0.9446 0.9386 0.9416 0.9747
0.0945 8.0 648 nan 0.9189 0.9364 0.9276 0.9672
0.0945 9.0 729 nan 0.9245 0.9343 0.9294 0.9662
0.0945 10.0 810 nan 0.9407 0.9407 0.9407 0.9728

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1