|
--- |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
language: en |
|
license: apache-2.0 |
|
datasets: |
|
- s2orc |
|
- flax-sentence-embeddings/stackexchange_xml |
|
- ms_marco |
|
- gooaq |
|
- yahoo_answers_topics |
|
- code_search_net |
|
- search_qa |
|
- eli5 |
|
- snli |
|
- multi_nli |
|
- wikihow |
|
- natural_questions |
|
- trivia_qa |
|
- embedding-data/sentence-compression |
|
- embedding-data/flickr30k-captions |
|
- embedding-data/altlex |
|
- embedding-data/simple-wiki |
|
- embedding-data/QQP |
|
- embedding-data/SPECTER |
|
- embedding-data/PAQ_pairs |
|
- embedding-data/WikiAnswers |
|
|
|
--- |
|
|
|
# ONNX version of intfloat/multilingual-e5-small |
|
|
|
This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. The ONNX version of this model is made for the [Metarank](https://github.com/metarank/metarank) re-ranker |
|
to do semantic similarity. |
|
|
|
Check out the [main Metarank docs](https://docs.metarank.ai) on how to configure it. |
|
|
|
TLDR: |
|
```yaml |
|
- type: field_match |
|
name: title_query_match |
|
rankingField: ranking.query |
|
itemField: item.title |
|
distance: cos |
|
method: |
|
type: bi-encoder |
|
model: metarank/multilingual-e5-small |
|
``` |
|
|
|
## License |
|
|
|
Apache 2.0 |