xlm-turkish-ner / README.md
meryemmm22's picture
Model save
be95e24 verified
metadata
library_name: transformers
license: mit
base_model: xlm-roberta-large
tags:
  - generated_from_trainer
datasets:
  - turkish_ner
metrics:
  - f1
  - precision
  - recall
  - accuracy
model-index:
  - name: xlm-turkish-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: turkish_ner
          type: turkish_ner
          config: default
          split: train
          args: default
        metrics:
          - name: F1
            type: f1
            value: 0.657840245968501
          - name: Precision
            type: precision
            value: 0.6669776910679447
          - name: Recall
            type: recall
            value: 0.6489497792266744
          - name: Accuracy
            type: accuracy
            value: 0.9113795745182391

xlm-turkish-ner

This model is a fine-tuned version of xlm-roberta-large on the turkish_ner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2836
  • F1: 0.6578
  • Precision: 0.6670
  • Recall: 0.6489
  • Accuracy: 0.9114

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Precision Recall Accuracy
0.2704 1.0 1250 0.2745 0.6153 0.6250 0.6059 0.8985
0.2047 2.0 2500 0.2656 0.6372 0.6429 0.6315 0.9046
0.1646 3.0 3750 0.2628 0.6560 0.6839 0.6303 0.9109
0.1256 4.0 5000 0.2895 0.6561 0.6641 0.6482 0.9092
0.0953 5.0 6250 0.3224 0.6555 0.6554 0.6556 0.9088

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0