Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,77 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
pipeline_tag: object-detection
|
4 |
---
|
5 |
+
# YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
|
6 |
+
|
7 |
+
This is the model repository for YOLOv9, containing the following checkpoints:
|
8 |
+
|
9 |
+
- GELAN-C (a newer, lighter architecture)
|
10 |
+
- GELAN-E
|
11 |
+
- YOLO9-C
|
12 |
+
- YOLO9-E
|
13 |
+
|
14 |
+
### How to Use
|
15 |
+
|
16 |
+
Clone YOLOv9 repository.
|
17 |
+
|
18 |
+
```
|
19 |
+
git clone https://github.com/WongKinYiu/yolov9.git
|
20 |
+
cd yolov9
|
21 |
+
```
|
22 |
+
|
23 |
+
Download the weights using `hf_hub_download` and use the loading function in helpers of YOLOv9.
|
24 |
+
|
25 |
+
```python
|
26 |
+
from huggingface_hub import hf_hub_download
|
27 |
+
hf_hub_download("merve/yolov9", filename="yolov9-c.pt", local_dir="./")
|
28 |
+
```
|
29 |
+
|
30 |
+
Load the model.
|
31 |
+
|
32 |
+
```python
|
33 |
+
# make sure you have the following dependencies
|
34 |
+
import torch
|
35 |
+
import numpy as np
|
36 |
+
from models.common import DetectMultiBackend
|
37 |
+
from utils.general import non_max_suppression, scale_boxes
|
38 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
39 |
+
from utils.augmentations import letterbox
|
40 |
+
import PIL.Image
|
41 |
+
|
42 |
+
@smart_inference_mode()
|
43 |
+
def predict(image_path, weights='yolov9-c.pt', imgsz=640, conf_thres=0.1, iou_thres=0.45):
|
44 |
+
# Initialize
|
45 |
+
device = select_device('0')
|
46 |
+
model = DetectMultiBackend(weights='yolov9-c.pt', device="0", fp16=False, data='data/coco.yaml')
|
47 |
+
stride, names, pt = model.stride, model.names, model.pt
|
48 |
+
|
49 |
+
# Load image
|
50 |
+
image = np.array(PIL.Image.open(image_path))
|
51 |
+
img = letterbox(img0, imgsz, stride=stride, auto=True)[0]
|
52 |
+
img = img[:, :, ::-1].transpose(2, 0, 1)
|
53 |
+
img = np.ascontiguousarray(img)
|
54 |
+
img = torch.from_numpy(img).to(device).float()
|
55 |
+
img /= 255.0
|
56 |
+
if img.ndimension() == 3:
|
57 |
+
img = img.unsqueeze(0)
|
58 |
+
|
59 |
+
# Inference
|
60 |
+
pred = model(img, augment=False, visualize=False)
|
61 |
+
|
62 |
+
# Apply NMS
|
63 |
+
pred = non_max_suppression(pred[0][0], conf_thres, iou_thres, classes=None, max_det=1000)
|
64 |
+
```
|
65 |
+
|
66 |
+
### Citation
|
67 |
+
|
68 |
+
```
|
69 |
+
@article{wang2024yolov9,
|
70 |
+
title={{YOLOv9}: Learning What You Want to Learn Using Programmable Gradient Information},
|
71 |
+
author={Wang, Chien-Yao and Liao, Hong-Yuan Mark},
|
72 |
+
booktitle={arXiv preprint arXiv:2402.13616},
|
73 |
+
year={2024}
|
74 |
+
}
|
75 |
+
```
|
76 |
+
|
77 |
+
The Colab notebook can be found [here](https://colab.research.google.com/drive/1U3rbOmAZOwPUekcvpQS4GGVJQYR7VaQX?usp=sharing#scrollTo=k-JxtpQ_2e0F). 🧡
|