mertcobanov's picture
Add new SentenceTransformer model
e1e0c18 verified
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:13842
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: Bir adam bir elinde kahve fincanı, diğer elinde tuvalet fırçası
ile tuvaletin önünde duruyor.
sentences:
- Şef ve orkestra oturmuyor.
- Bir adam bir banyoda duruyor.
- Bir adam kahve demlemeye çalışıyor.
- source_sentence: Sarı ceketli ve siyah pantolonlu iki adam madalyalara sahip.
sentences:
- Erkeklere bir noktada bir ödül verilmiştir.
- Başlangıçtaki net ölçek faydası, ücret primleri olsun ya da olmasın, pozitiftir.
- Adamlar düz kırmızı ceketler ve mavi pantolonlar giymiş.
- source_sentence: 'Restoran zinciri içi: Planet Hollywood, çeşitli film hatıraları
mekânı süslüyor.'
sentences:
- Kadın bir şey tutuyor.
- Bir restoranın içi.
- Yeni gümüş makinelerin bulunduğu bir çamaşırhane içi.
- source_sentence: İki çocuk, binanın yakınındaki kaldırımda sokakta koşuyor.
sentences:
- Çocuklar dışarıda.
- Bazı odaların dışına balkonları vardır.
- Çocuklar içeride.
- source_sentence: Ağaçlarla çevrili bulvar denize üç bloktan daha az uzanıyor.
sentences:
- Deniz üç sokak bile uzakta değil.
- Çocuk başını duvardaki bir delikten geçiriyor.
- Denize ulaşmak için caddeden iki mil yol almanız gerekiyor.
datasets:
- mertcobanov/all-nli-triplets-turkish
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: MPNet base trained on AllNLI-turkish triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev turkish
type: all-nli-dev-turkish
metrics:
- type: cosine_accuracy
value: 0.7422539489671932
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test turkish
type: all-nli-test-turkish
metrics:
- type: cosine_accuracy
value: 0.7503404448479346
name: Cosine Accuracy
---
# MPNet base trained on AllNLI-turkish triplets
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v3")
# Run inference
sentences = [
'Ağaçlarla çevrili bulvar denize üç bloktan daha az uzanıyor.',
'Deniz üç sokak bile uzakta değil.',
'Denize ulaşmak için caddeden iki mil yol almanız gerekiyor.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Datasets: `all-nli-dev-turkish` and `all-nli-test-turkish`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | all-nli-dev-turkish | all-nli-test-turkish |
|:--------------------|:--------------------|:---------------------|
| **cosine_accuracy** | **0.7423** | **0.7503** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### all-nli-triplets-turkish
* Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [bff203b](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/bff203b01bbf5b818f7ad85be0adbe8d64eba9ee)
* Size: 13,842 training samples
* Columns: <code>anchor_translated</code>, <code>positive_translated</code>, and <code>negative_translated</code>
* Approximate statistics based on the first 1000 samples:
| | anchor_translated | positive_translated | negative_translated |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 13.42 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 31.64 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 32.03 tokens</li><li>max: 89 tokens</li></ul> |
* Samples:
| anchor_translated | positive_translated | negative_translated |
|:-----------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
| <code>Asyalı okul çocukları birbirlerinin omuzlarında oturuyor.</code> | <code>Okul çocukları bir arada</code> | <code>Asyalı fabrika işçileri oturuyor.</code> |
| <code>İnsanlar dışarıda.</code> | <code>Arka planda resmi kıyafetler giymiş bir grup insan var ve beyaz gömlekli, haki pantolonlu bir adam toprak yoldan yeşil çimenlere atlıyor.</code> | <code>Bir odada üç kişiyle birlikte büyük bir kamera tutan bir adam.</code> |
| <code>Bir adam dışarıda.</code> | <code>Adam yarış sırasında yan sepetten bir su birikintisine düşer.</code> | <code>Beyaz bir sarık sarmış gömleksiz bir adam bir ağaç gövdesine tırmanıyor.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### all-nli-triplets-turkish
* Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [bff203b](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/bff203b01bbf5b818f7ad85be0adbe8d64eba9ee)
* Size: 6,584 evaluation samples
* Columns: <code>anchor_translated</code>, <code>positive_translated</code>, and <code>negative_translated</code>
* Approximate statistics based on the first 1000 samples:
| | anchor_translated | positive_translated | negative_translated |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 42.62 tokens</li><li>max: 192 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 22.58 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 22.07 tokens</li><li>max: 65 tokens</li></ul> |
* Samples:
| anchor_translated | positive_translated | negative_translated |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|
| <code>Ayrıca, bu özel tüketim vergileri, diğer vergiler gibi, hükümetin ödeme zorunluluğunu sağlama yetkisini kullanarak belirlenir.</code> | <code>Hükümetin ödeme zorlaması, özel tüketim vergilerinin nasıl hesaplandığını belirler.</code> | <code>Özel tüketim vergileri genel kuralın bir istisnasıdır ve aslında GSYİH payına dayalı olarak belirlenir.</code> |
| <code>Gri bir sweatshirt giymiş bir sanatçı, canlı renklerde bir kasaba tablosu üzerinde çalışıyor.</code> | <code>Bir ressam gri giysiler içinde bir kasabanın resmini yapıyor.</code> | <code>Bir kişi bir beyzbol sopası tutuyor ve gelen bir atış için planda bekliyor.</code> |
| <code>İmkansız.</code> | <code>Yapılamaz.</code> | <code>Tamamen mümkün.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 10
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | Validation Loss | all-nli-dev-turkish_cosine_accuracy | all-nli-test-turkish_cosine_accuracy |
|:------:|:----:|:-------------:|:---------------:|:-----------------------------------:|:------------------------------------:|
| 0 | 0 | - | - | 0.6092 | - |
| 0.1155 | 100 | 3.3654 | 2.9084 | 0.6624 | - |
| 0.2309 | 200 | 2.6321 | 1.7277 | 0.7395 | - |
| 0.3464 | 300 | 1.9629 | 1.5000 | 0.7512 | - |
| 0.4619 | 400 | 1.6662 | 1.4965 | 0.7494 | - |
| 0.5774 | 500 | 1.4712 | 1.5374 | 0.7418 | - |
| 0.6928 | 600 | 1.0429 | 1.6301 | 0.7360 | - |
| 0.8083 | 700 | 0.8995 | 2.1626 | 0.7044 | - |
| 0.9238 | 800 | 0.7269 | 2.0440 | 0.6996 | - |
| 1.0381 | 900 | 1.0584 | 1.6714 | 0.7438 | - |
| 1.1536 | 1000 | 1.1864 | 1.5326 | 0.7495 | - |
| 1.2691 | 1100 | 1.0193 | 1.4498 | 0.7518 | - |
| 1.3845 | 1200 | 0.8237 | 1.5399 | 0.7506 | - |
| 1.5 | 1300 | 0.8279 | 1.6747 | 0.7521 | - |
| 1.6155 | 1400 | 0.626 | 1.5776 | 0.7453 | - |
| 1.7309 | 1500 | 0.5396 | 1.8877 | 0.7139 | - |
| 1.8464 | 1600 | 0.4294 | 2.2258 | 0.6947 | - |
| 1.9619 | 1700 | 0.4988 | 1.8753 | 0.7204 | - |
| 2.0762 | 1800 | 0.6987 | 1.5408 | 0.7524 | - |
| 2.1917 | 1900 | 0.6684 | 1.4434 | 0.7618 | - |
| 2.3072 | 2000 | 0.6072 | 1.4840 | 0.7520 | - |
| 2.4226 | 2100 | 0.5081 | 1.5225 | 0.7561 | - |
| 2.5381 | 2200 | 0.5216 | 1.5280 | 0.7514 | - |
| 2.6536 | 2300 | 0.2627 | 1.8830 | 0.7227 | - |
| 2.7691 | 2400 | 0.2585 | 1.9529 | 0.7221 | - |
| 2.8845 | 2500 | 0.129 | 2.2323 | 0.7047 | - |
| 3.0 | 2600 | 0.1698 | 2.2904 | 0.7063 | - |
| 3.1143 | 2700 | 0.5559 | 1.6110 | 0.7553 | - |
| 3.2298 | 2800 | 0.4356 | 1.5544 | 0.7508 | - |
| 3.3453 | 2900 | 0.3886 | 1.5437 | 0.7539 | - |
| 3.4607 | 3000 | 0.3573 | 1.6262 | 0.7539 | - |
| 3.5762 | 3100 | 0.2652 | 1.8391 | 0.7321 | - |
| 3.6917 | 3200 | 0.0765 | 2.0359 | 0.7186 | - |
| 3.8072 | 3300 | 0.0871 | 2.0946 | 0.7262 | - |
| 3.9226 | 3400 | 0.0586 | 2.2168 | 0.7093 | - |
| 4.0370 | 3500 | 0.1755 | 1.7567 | 0.7462 | - |
| 4.1524 | 3600 | 0.3397 | 1.7735 | 0.7442 | - |
| 4.2679 | 3700 | 0.3067 | 1.7475 | 0.7497 | - |
| 4.3834 | 3800 | 0.246 | 1.7075 | 0.7476 | - |
| 4.4988 | 3900 | 0.253 | 1.7648 | 0.7483 | - |
| 4.6143 | 4000 | 0.1223 | 1.9139 | 0.7246 | - |
| 4.7298 | 4100 | 0.0453 | 2.1138 | 0.7152 | - |
| 4.8453 | 4200 | 0.0241 | 2.2354 | 0.7240 | - |
| 4.9607 | 4300 | 0.0363 | 2.3080 | 0.7251 | - |
| 5.0751 | 4400 | 0.1897 | 1.7394 | 0.7494 | - |
| 5.1905 | 4500 | 0.2114 | 1.6929 | 0.7524 | - |
| 5.3060 | 4600 | 0.2101 | 1.7402 | 0.7556 | - |
| 5.4215 | 4700 | 0.1471 | 1.7990 | 0.7445 | - |
| 5.5370 | 4800 | 0.1783 | 1.8060 | 0.7456 | - |
| 5.6524 | 4900 | 0.0215 | 2.0118 | 0.7325 | - |
| 5.7679 | 5000 | 0.0083 | 2.0766 | 0.7265 | - |
| 5.8834 | 5100 | 0.0138 | 2.2054 | 0.7201 | - |
| 5.9988 | 5200 | 0.0144 | 2.1667 | 0.7164 | - |
| 6.1132 | 5300 | 0.2023 | 1.7309 | 0.7543 | - |
| 6.2286 | 5400 | 0.1356 | 1.6685 | 0.7622 | - |
| 6.3441 | 5500 | 0.1307 | 1.7292 | 0.7527 | - |
| 6.4596 | 5600 | 0.1222 | 1.8403 | 0.7435 | - |
| 6.5751 | 5700 | 0.1049 | 1.8456 | 0.7394 | - |
| 6.6905 | 5800 | 0.0051 | 1.9898 | 0.7362 | - |
| 6.8060 | 5900 | 0.0131 | 2.0532 | 0.7310 | - |
| 6.9215 | 6000 | 0.0132 | 2.2237 | 0.7186 | - |
| 7.0358 | 6100 | 0.0453 | 1.8965 | 0.7397 | - |
| 7.1513 | 6200 | 0.1109 | 1.7195 | 0.7550 | - |
| 7.2667 | 6300 | 0.1002 | 1.7547 | 0.7530 | - |
| 7.3822 | 6400 | 0.0768 | 1.7701 | 0.7433 | - |
| 7.4977 | 6500 | 0.0907 | 1.8472 | 0.7406 | - |
| 7.6132 | 6600 | 0.038 | 1.9162 | 0.7377 | - |
| 7.7286 | 6700 | 0.0151 | 1.9407 | 0.7312 | - |
| 7.8441 | 6800 | 0.0087 | 1.9657 | 0.7289 | - |
| 7.9596 | 6900 | 0.0104 | 2.0302 | 0.7227 | - |
| 8.0739 | 7000 | 0.0727 | 1.8692 | 0.7514 | - |
| 8.1894 | 7100 | 0.0733 | 1.8039 | 0.7520 | - |
| 8.3048 | 7200 | 0.0728 | 1.7400 | 0.7539 | - |
| 8.4203 | 7300 | 0.0537 | 1.8062 | 0.7461 | - |
| 8.5358 | 7400 | 0.059 | 1.8469 | 0.7489 | - |
| 8.6513 | 7500 | 0.0089 | 1.9033 | 0.7403 | - |
| 8.7667 | 7600 | 0.0034 | 1.9683 | 0.7354 | - |
| 8.8822 | 7700 | 0.0018 | 2.0075 | 0.7366 | - |
| 8.9977 | 7800 | 0.0023 | 2.0646 | 0.7322 | - |
| 9.1120 | 7900 | 0.0642 | 1.9063 | 0.7430 | - |
| 9.2275 | 8000 | 0.0596 | 1.8492 | 0.7468 | - |
| 9.3430 | 8100 | 0.0479 | 1.8180 | 0.7517 | - |
| 9.4584 | 8200 | 0.0561 | 1.8122 | 0.7468 | - |
| 9.5739 | 8300 | 0.0311 | 1.8528 | 0.7456 | - |
| 9.6894 | 8400 | 0.0069 | 1.8778 | 0.7447 | - |
| 9.8048 | 8500 | 0.0027 | 1.8989 | 0.7423 | - |
| 9.9203 | 8600 | 0.0093 | 1.9089 | 0.7423 | - |
| 9.9896 | 8660 | - | - | - | 0.7503 |
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.3.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->