|
---
|
|
language:
|
|
- en
|
|
license: apache-2.0
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:13842
|
|
- loss:MultipleNegativesRankingLoss
|
|
base_model: microsoft/mpnet-base
|
|
widget:
|
|
- source_sentence: Bir köpek sahibi, evcil hayvanıyla birlikte koşuyor ve evcil hayvan
|
|
bir parkurda engellerden kaçınıyor.
|
|
sentences:
|
|
- Bazı bitkilerin önünde mavi bir kano.
|
|
- Bir adam köpeğinin yanında koşuyor.
|
|
- Adam bir kediyle birlikte.
|
|
- source_sentence: Parlamenter bölümünün patronunun ev hizmetiyle bağlantılı bir politikacı,
|
|
0-609-3459812 numaralı cep telefonuna sahip ve mizah anlayışının olmamasıyla tanınıyor,
|
|
'Hayran' adlı birinden gelen 'En iyi kürek dilekleri' mesajını pek iyi karşılamadı.
|
|
sentences:
|
|
- Doktor Perennial, kötü niyetli çavuş uyandığında ayakta duruyordu.
|
|
- Politikacı, patronunun ev hizmetini aradığında, bir 'hayran'dan gelen bir mesaja
|
|
pek hoş karşılamadı.
|
|
- Mesajı aldığı için o kadar minnettardı ki, gönderen kişiye bir demet çiçek gönderdi.
|
|
- source_sentence: Bankanın kasalarında.
|
|
sentences:
|
|
- Ayakta duran bir insan
|
|
- Banka kasasında.
|
|
- Bankadaki kasa.
|
|
- source_sentence: Bir grup Asyalı erkek, birlikte bir yemek yedikten sonra büyük
|
|
bir masanın etrafında poz veriyor.
|
|
sentences:
|
|
- Bir grup Asyalı erkek birlikte bir yemek yedi.
|
|
- Pazarlar, kaplıcalar ve kayak pistleri burada bulunan diğer cazibe merkezlerinden
|
|
bazılarını oluşturuyor.
|
|
- Bir grup Asyalı erkek futbol oynuyor.
|
|
- source_sentence: Böyle şeyler görmek ve eğer yapabileceğiniz en küçük bir şey varsa,
|
|
bu yardımcı olur.
|
|
sentences:
|
|
- Böyle bir şeyi gözlemlemek ve yapıp yapamayacağınızı bilmek için.
|
|
- Adamın gömleği, kot pantolonundan farklı bir renkte.
|
|
- Böyle bir şeyi görmek kötü, eğer yapabiliyorsanız buna hiç katkıda bulunmayın.
|
|
datasets:
|
|
- mertcobanov/all-nli-triplets-turkish
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- cosine_accuracy
|
|
model-index:
|
|
- name: MPNet base trained on AllNLI-turkish triplets
|
|
results:
|
|
- task:
|
|
type: triplet
|
|
name: Triplet
|
|
dataset:
|
|
name: all nli dev turkish
|
|
type: all-nli-dev-turkish
|
|
metrics:
|
|
- type: cosine_accuracy
|
|
value: 0.7454434993924666
|
|
name: Cosine Accuracy
|
|
- task:
|
|
type: triplet
|
|
name: Triplet
|
|
dataset:
|
|
name: all nli test turkish
|
|
type: all-nli-test-turkish
|
|
metrics:
|
|
- type: cosine_accuracy
|
|
value: 0.7524587683461946
|
|
name: Cosine Accuracy
|
|
---
|
|
|
|
# MPNet base trained on AllNLI-turkish triplets
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
- **Training Dataset:**
|
|
- [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish)
|
|
- **Language:** en
|
|
- **License:** apache-2.0
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v2")
|
|
# Run inference
|
|
sentences = [
|
|
'Böyle şeyler görmek ve eğer yapabileceğiniz en küçük bir şey varsa, bu yardımcı olur.',
|
|
'Böyle bir şeyi gözlemlemek ve yapıp yapamayacağınızı bilmek için.',
|
|
'Böyle bir şeyi görmek kötü, eğer yapabiliyorsanız buna hiç katkıda bulunmayın.',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Triplet
|
|
|
|
* Datasets: `all-nli-dev-turkish` and `all-nli-test-turkish`
|
|
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
|
|
|
| Metric | all-nli-dev-turkish | all-nli-test-turkish |
|
|
|:--------------------|:--------------------|:---------------------|
|
|
| **cosine_accuracy** | **0.7454** | **0.7525** |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### all-nli-triplets-turkish
|
|
|
|
* Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [bff203b](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/bff203b01bbf5b818f7ad85be0adbe8d64eba9ee)
|
|
* Size: 13,842 training samples
|
|
* Columns: <code>anchor_translated</code>, <code>positive_translated</code>, and <code>negative_translated</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | anchor_translated | positive_translated | negative_translated |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string | string |
|
|
| details | <ul><li>min: 8 tokens</li><li>mean: 13.42 tokens</li><li>max: 95 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 31.64 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 32.03 tokens</li><li>max: 89 tokens</li></ul> |
|
|
* Samples:
|
|
| anchor_translated | positive_translated | negative_translated |
|
|
|:-----------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|
|
|
| <code>Asyalı okul çocukları birbirlerinin omuzlarında oturuyor.</code> | <code>Okul çocukları bir arada</code> | <code>Asyalı fabrika işçileri oturuyor.</code> |
|
|
| <code>İnsanlar dışarıda.</code> | <code>Arka planda resmi kıyafetler giymiş bir grup insan var ve beyaz gömlekli, haki pantolonlu bir adam toprak yoldan yeşil çimenlere atlıyor.</code> | <code>Bir odada üç kişiyle birlikte büyük bir kamera tutan bir adam.</code> |
|
|
| <code>Bir adam dışarıda.</code> | <code>Adam yarış sırasında yan sepetten bir su birikintisine düşer.</code> | <code>Beyaz bir sarık sarmış gömleksiz bir adam bir ağaç gövdesine tırmanıyor.</code> |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
|
```json
|
|
{
|
|
"scale": 20.0,
|
|
"similarity_fct": "cos_sim"
|
|
}
|
|
```
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### all-nli-triplets-turkish
|
|
|
|
* Dataset: [all-nli-triplets-turkish](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish) at [bff203b](https://huggingface.co/datasets/mertcobanov/all-nli-triplets-turkish/tree/bff203b01bbf5b818f7ad85be0adbe8d64eba9ee)
|
|
* Size: 6,584 evaluation samples
|
|
* Columns: <code>anchor_translated</code>, <code>positive_translated</code>, and <code>negative_translated</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | anchor_translated | positive_translated | negative_translated |
|
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
|
| type | string | string | string |
|
|
| details | <ul><li>min: 5 tokens</li><li>mean: 42.62 tokens</li><li>max: 192 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 22.58 tokens</li><li>max: 77 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 22.07 tokens</li><li>max: 65 tokens</li></ul> |
|
|
* Samples:
|
|
| anchor_translated | positive_translated | negative_translated |
|
|
|:--------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------|
|
|
| <code>Ayrıca, bu özel tüketim vergileri, diğer vergiler gibi, hükümetin ödeme zorunluluğunu sağlama yetkisini kullanarak belirlenir.</code> | <code>Hükümetin ödeme zorlaması, özel tüketim vergilerinin nasıl hesaplandığını belirler.</code> | <code>Özel tüketim vergileri genel kuralın bir istisnasıdır ve aslında GSYİH payına dayalı olarak belirlenir.</code> |
|
|
| <code>Gri bir sweatshirt giymiş bir sanatçı, canlı renklerde bir kasaba tablosu üzerinde çalışıyor.</code> | <code>Bir ressam gri giysiler içinde bir kasabanın resmini yapıyor.</code> | <code>Bir kişi bir beyzbol sopası tutuyor ve gelen bir atış için planda bekliyor.</code> |
|
|
| <code>İmkansız.</code> | <code>Yapılamaz.</code> | <code>Tamamen mümkün.</code> |
|
|
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
|
```json
|
|
{
|
|
"scale": 20.0,
|
|
"similarity_fct": "cos_sim"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `learning_rate`: 2e-05
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 16
|
|
- `per_device_eval_batch_size`: 16
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 2e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | Validation Loss | all-nli-dev-turkish_cosine_accuracy | all-nli-test-turkish_cosine_accuracy |
|
|
|:------:|:----:|:-------------:|:---------------:|:-----------------------------------:|:------------------------------------:|
|
|
| 0 | 0 | - | - | 0.6092 | - |
|
|
| 0.1155 | 100 | 2.7414 | 1.6615 | 0.7429 | - |
|
|
| 0.2309 | 200 | 1.64 | 1.4650 | 0.7483 | - |
|
|
| 0.3464 | 300 | 1.2391 | 1.4068 | 0.7561 | - |
|
|
| 0.4619 | 400 | 1.1146 | 1.4367 | 0.7549 | - |
|
|
| 0.5774 | 500 | 1.0341 | 1.4887 | 0.7486 | - |
|
|
| 0.6928 | 600 | 0.7568 | 1.4568 | 0.7535 | - |
|
|
| 0.8083 | 700 | 0.7216 | 1.5680 | 0.7451 | - |
|
|
| 0.9238 | 800 | 0.5919 | 1.5492 | 0.7454 | - |
|
|
| 1.0 | 866 | - | - | - | 0.7525 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.10.14
|
|
- Sentence Transformers: 3.3.1
|
|
- Transformers: 4.46.3
|
|
- PyTorch: 2.3.0
|
|
- Accelerate: 1.1.1
|
|
- Datasets: 3.1.0
|
|
- Tokenizers: 0.20.3
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### MultipleNegativesRankingLoss
|
|
```bibtex
|
|
@misc{henderson2017efficient,
|
|
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
|
year={2017},
|
|
eprint={1705.00652},
|
|
archivePrefix={arXiv},
|
|
primaryClass={cs.CL}
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |