|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- klue |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: KR-FinBert-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: klue |
|
type: klue |
|
config: ner |
|
split: train |
|
args: ner |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.70817831734221 |
|
- name: Recall |
|
type: recall |
|
value: 0.7610296696359683 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7336533910338766 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9504335292160994 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# KR-FinBert-finetuned-ner |
|
|
|
This model is a fine-tuned version of [snunlp/KR-FinBert](https://huggingface.co/snunlp/KR-FinBert) on the klue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1634 |
|
- Precision: 0.7082 |
|
- Recall: 0.7610 |
|
- F1: 0.7337 |
|
- Accuracy: 0.9504 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.2028 | 1.0 | 1313 | 0.1852 | 0.6650 | 0.7060 | 0.6849 | 0.9406 | |
|
| 0.1232 | 2.0 | 2626 | 0.1627 | 0.7028 | 0.7459 | 0.7237 | 0.9487 | |
|
| 0.0942 | 3.0 | 3939 | 0.1634 | 0.7082 | 0.7610 | 0.7337 | 0.9504 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|