|
--- |
|
license: llama3 |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: llama3-ai-detector-v3-20k-32batch-512max-len |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# llama3-ai-detector-v3-20k-32batch-512max-len |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1170 |
|
- Accuracy: 0.9662 |
|
- Precision: 0.9865 |
|
- Recall: 0.9590 |
|
- F1: 0.9726 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.3286 | 1.0 | 625 | 0.1242 | 0.9502 | 0.9842 | 0.9353 | 0.9591 | |
|
| 0.1012 | 2.0 | 1250 | 0.1170 | 0.9662 | 0.9865 | 0.9590 | 0.9726 | |
|
| 0.0543 | 3.0 | 1875 | 0.1445 | 0.9688 | 0.9717 | 0.9785 | 0.9751 | |
|
| 0.0082 | 4.0 | 2500 | 0.1693 | 0.9688 | 0.9802 | 0.9696 | 0.9749 | |
|
| 0.0015 | 5.0 | 3125 | 0.1849 | 0.9702 | 0.9784 | 0.9737 | 0.9761 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.0 |
|
- Pytorch 2.2.2+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |