mekjr1's picture
End of training
0dc8af3 verified
|
raw
history blame
2 kB
metadata
license: llama3
library_name: peft
tags:
  - generated_from_trainer
base_model: meta-llama/Meta-Llama-3-8B
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: llama3-ai-detector-v3-20k-32batch-512max-len
    results: []

llama3-ai-detector-v3-20k-32batch-512max-len

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1170
  • Accuracy: 0.9662
  • Precision: 0.9865
  • Recall: 0.9590
  • F1: 0.9726

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3286 1.0 625 0.1242 0.9502 0.9842 0.9353 0.9591
0.1012 2.0 1250 0.1170 0.9662 0.9865 0.9590 0.9726
0.0543 3.0 1875 0.1445 0.9688 0.9717 0.9785 0.9751
0.0082 4.0 2500 0.1693 0.9688 0.9802 0.9696 0.9749
0.0015 5.0 3125 0.1849 0.9702 0.9784 0.9737 0.9761

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1