meepmoo's picture
Upload folder using huggingface_hub
208b0eb verified
raw
history blame
9.26 kB
import os
import gc
import imageio
import numpy as np
import torch
import torchvision
import cv2
from einops import rearrange
from PIL import Image
def get_width_and_height_from_image_and_base_resolution(image, base_resolution):
target_pixels = int(base_resolution) * int(base_resolution)
original_width, original_height = Image.open(image).size
ratio = (target_pixels / (original_width * original_height)) ** 0.5
width_slider = round(original_width * ratio)
height_slider = round(original_height * ratio)
return height_slider, width_slider
def color_transfer(sc, dc):
"""
Transfer color distribution from of sc, referred to dc.
Args:
sc (numpy.ndarray): input image to be transfered.
dc (numpy.ndarray): reference image
Returns:
numpy.ndarray: Transferred color distribution on the sc.
"""
def get_mean_and_std(img):
x_mean, x_std = cv2.meanStdDev(img)
x_mean = np.hstack(np.around(x_mean, 2))
x_std = np.hstack(np.around(x_std, 2))
return x_mean, x_std
sc = cv2.cvtColor(sc, cv2.COLOR_RGB2LAB)
s_mean, s_std = get_mean_and_std(sc)
dc = cv2.cvtColor(dc, cv2.COLOR_RGB2LAB)
t_mean, t_std = get_mean_and_std(dc)
img_n = ((sc - s_mean) * (t_std / s_std)) + t_mean
np.putmask(img_n, img_n > 255, 255)
np.putmask(img_n, img_n < 0, 0)
dst = cv2.cvtColor(cv2.convertScaleAbs(img_n), cv2.COLOR_LAB2RGB)
return dst
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=12, imageio_backend=True, color_transfer_post_process=False):
videos = rearrange(videos, "b c t h w -> t b c h w")
outputs = []
for x in videos:
x = torchvision.utils.make_grid(x, nrow=n_rows)
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
outputs.append(Image.fromarray(x))
if color_transfer_post_process:
for i in range(1, len(outputs)):
outputs[i] = Image.fromarray(color_transfer(np.uint8(outputs[i]), np.uint8(outputs[0])))
os.makedirs(os.path.dirname(path), exist_ok=True)
if imageio_backend:
if path.endswith("mp4"):
imageio.mimsave(path, outputs, fps=fps)
else:
imageio.mimsave(path, outputs, duration=(1000 * 1/fps))
else:
if path.endswith("mp4"):
path = path.replace('.mp4', '.gif')
outputs[0].save(path, format='GIF', append_images=outputs, save_all=True, duration=100, loop=0)
def get_image_to_video_latent(validation_image_start, validation_image_end, video_length, sample_size):
if validation_image_start is not None and validation_image_end is not None:
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
image_start = image_start.resize([sample_size[1], sample_size[0]])
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
else:
image_start = clip_image = validation_image_start
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
if type(validation_image_end) is str and os.path.isfile(validation_image_end):
image_end = Image.open(validation_image_end).convert("RGB")
image_end = image_end.resize([sample_size[1], sample_size[0]])
else:
image_end = validation_image_end
image_end = [_image_end.resize([sample_size[1], sample_size[0]]) for _image_end in image_end]
if type(image_start) is list:
clip_image = clip_image[0]
start_video = torch.cat(
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
dim=2
)
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
input_video[:, :, :len(image_start)] = start_video
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, len(image_start):] = 255
else:
input_video = torch.tile(
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
[1, 1, video_length, 1, 1]
)
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, 1:] = 255
if type(image_end) is list:
image_end = [_image_end.resize(image_start[0].size if type(image_start) is list else image_start.size) for _image_end in image_end]
end_video = torch.cat(
[torch.from_numpy(np.array(_image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_end in image_end],
dim=2
)
input_video[:, :, -len(end_video):] = end_video
input_video_mask[:, :, -len(image_end):] = 0
else:
image_end = image_end.resize(image_start[0].size if type(image_start) is list else image_start.size)
input_video[:, :, -1:] = torch.from_numpy(np.array(image_end)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0)
input_video_mask[:, :, -1:] = 0
input_video = input_video / 255
elif validation_image_start is not None:
if type(validation_image_start) is str and os.path.isfile(validation_image_start):
image_start = clip_image = Image.open(validation_image_start).convert("RGB")
image_start = image_start.resize([sample_size[1], sample_size[0]])
clip_image = clip_image.resize([sample_size[1], sample_size[0]])
else:
image_start = clip_image = validation_image_start
image_start = [_image_start.resize([sample_size[1], sample_size[0]]) for _image_start in image_start]
clip_image = [_clip_image.resize([sample_size[1], sample_size[0]]) for _clip_image in clip_image]
image_end = None
if type(image_start) is list:
clip_image = clip_image[0]
start_video = torch.cat(
[torch.from_numpy(np.array(_image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0) for _image_start in image_start],
dim=2
)
input_video = torch.tile(start_video[:, :, :1], [1, 1, video_length, 1, 1])
input_video[:, :, :len(image_start)] = start_video
input_video = input_video / 255
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, len(image_start):] = 255
else:
input_video = torch.tile(
torch.from_numpy(np.array(image_start)).permute(2, 0, 1).unsqueeze(1).unsqueeze(0),
[1, 1, video_length, 1, 1]
) / 255
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, 1:, ] = 255
else:
image_start = None
image_end = None
input_video = torch.zeros([1, 3, video_length, sample_size[0], sample_size[1]])
input_video_mask = torch.ones([1, 1, video_length, sample_size[0], sample_size[1]]) * 255
clip_image = None
del image_start
del image_end
gc.collect()
return input_video, input_video_mask, clip_image
def get_video_to_video_latent(input_video_path, video_length, sample_size, fps=None, validation_video_mask=None):
if isinstance(input_video_path, str):
cap = cv2.VideoCapture(input_video_path)
input_video = []
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_skip = 1 if fps is None else int(original_fps // fps)
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
if frame_count % frame_skip == 0:
frame = cv2.resize(frame, (sample_size[1], sample_size[0]))
input_video.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
frame_count += 1
cap.release()
else:
input_video = input_video_path
input_video = torch.from_numpy(np.array(input_video))[:video_length]
input_video = input_video.permute([3, 0, 1, 2]).unsqueeze(0) / 255
if validation_video_mask is not None:
validation_video_mask = Image.open(validation_video_mask).convert('L').resize((sample_size[1], sample_size[0]))
input_video_mask = np.where(np.array(validation_video_mask) < 240, 0, 255)
input_video_mask = torch.from_numpy(np.array(input_video_mask)).unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0)
input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1])
input_video_mask = input_video_mask.to(input_video.device, input_video.dtype)
else:
input_video_mask = torch.zeros_like(input_video[:, :1])
input_video_mask[:, :, :] = 255
return input_video, input_video_mask, None