|
--- |
|
license: mit |
|
language: |
|
- lat |
|
datasets: |
|
- CATMuS/medieval |
|
tags: |
|
- trocr |
|
- image-to-text |
|
widget: |
|
- src: https://huggingface.co/medieval-data/trocr-medieval-castilian-hybrida/resolve/main/images/hybrida-1.png |
|
example_title: Hybrida 1 |
|
- src: https://huggingface.co/medieval-data/trocr-medieval-castilian-hybrida/resolve/main/images/hybrida-2.png |
|
example_title: Hybrida 2 |
|
- src: https://huggingface.co/medieval-data/trocr-medieval-castilian-hybrida/resolve/main/images/hybrida-3.png |
|
example_title: Hybrida 3 |
|
--- |
|
|
|
![logo](logo-hybrida.png) |
|
|
|
# About |
|
|
|
This is a TrOCR model for medieval Castilian, specifically the Hybrida script. The base model was [microsoft/trocr-base-handwritten](https://huggingface.co/microsoft/trocr-base-handwritten). The model was then finetuned to Caroline: [medieval-data/trocr-medieval-latin-caroline](https://huggingface.co/medieval-data/trocr-medieval-latin-caroline). From a saved checkpoint, the model was further finetuned to Castilian Hybrida. |
|
|
|
The dataset used for training was [CATMuS](https://huggingface.co/datasets/CATMuS/medieval). |
|
|
|
The model has not been formally tested. Preliminary examination indicates that further finetuning is needed. |
|
|
|
Finetuning was done with finetune.py found in this repository. |
|
|
|
# Usage |
|
|
|
```python |
|
from transformers import TrOCRProcessor, VisionEncoderDecoderModel |
|
from PIL import Image |
|
import requests |
|
|
|
# load image from the IAM database |
|
url = 'https://huggingface.co/medieval-data/trocr-medieval-castilian-hybrida/resolve/main/images/hybrida-1.png' |
|
image = Image.open(requests.get(url, stream=True).raw).convert("RGB") |
|
|
|
processor = TrOCRProcessor.from_pretrained('medieval-data/trocr-medieval-castilian-hybrida') |
|
model = VisionEncoderDecoderModel.from_pretrained('medieval-data/trocr-medieval-castilian-hybrida') |
|
pixel_values = processor(images=image, return_tensors="pt").pixel_values |
|
|
|
generated_ids = model.generate(pixel_values) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
# BibTeX entry and citation info |
|
|
|
## TrOCR Paper |
|
|
|
```tex |
|
@misc{li2021trocr, |
|
title={TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models}, |
|
author={Minghao Li and Tengchao Lv and Lei Cui and Yijuan Lu and Dinei Florencio and Cha Zhang and Zhoujun Li and Furu Wei}, |
|
year={2021}, |
|
eprint={2109.10282}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
## CATMuS Paper |
|
|
|
```tex |
|
@unpublished{clerice:hal-04453952, |
|
TITLE = {{CATMuS Medieval: A multilingual large-scale cross-century dataset in Latin script for handwritten text recognition and beyond}}, |
|
AUTHOR = {Cl{\'e}rice, Thibault and Pinche, Ariane and Vlachou-Efstathiou, Malamatenia and Chagu{\'e}, Alix and Camps, Jean-Baptiste and Gille-Levenson, Matthias and Brisville-Fertin, Olivier and Fischer, Franz and Gervers, Michaels and Boutreux, Agn{\`e}s and Manton, Avery and Gabay, Simon and O'Connor, Patricia and Haverals, Wouter and Kestemont, Mike and Vandyck, Caroline and Kiessling, Benjamin}, |
|
URL = {https://inria.hal.science/hal-04453952}, |
|
NOTE = {working paper or preprint}, |
|
YEAR = {2024}, |
|
MONTH = Feb, |
|
KEYWORDS = {Historical sources ; medieval manuscripts ; Latin scripts ; benchmarking dataset ; multilingual ; handwritten text recognition}, |
|
PDF = {https://inria.hal.science/hal-04453952/file/ICDAR24___CATMUS_Medieval-1.pdf}, |
|
HAL_ID = {hal-04453952}, |
|
HAL_VERSION = {v1}, |
|
} |
|
``` |
|
|