|
Indonesian BERT Base Sentiment Classifier is a sentiment-text-classification model. The model was originally the pre-trained [IndoBERT Base Model (phase1 - uncased)](https://huggingface.co/indobenchmark/indobert-base-p1) model using [Prosa sentiment dataset](https://github.com/indobenchmark/indonlu/tree/master/dataset/smsa_doc-sentiment-prosa) |
|
|
|
## How to Use |
|
### As Text Classifier |
|
```python |
|
from transformers import pipeline |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
pretrained= "mdhugol/indonesia-bert-sentiment-classification" |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(pretrained) |
|
tokenizer = AutoTokenizer.from_pretrained(pretrained) |
|
|
|
sentiment_analysis = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) |
|
|
|
label_index = {'LABEL_0': 'positive', 'LABEL_1': 'neutral', 'LABEL_2': 'negative'} |
|
|
|
pos_text = "Sangat bahagia hari ini" |
|
neg_text = "Dasar anak sialan!! Kurang ajar!!" |
|
|
|
result = sentiment_analysis(pos_text) |
|
status = label_index[result[0]['label']] |
|
score = result[0]['score'] |
|
print(f'Text: {pos_text} | Label : {status} ({score * 100:.3f}%)') |
|
|
|
result = sentiment_analysis(neg_text) |
|
status = label_index[result[0]['label']] |
|
score = result[0]['score'] |
|
print(f'Text: {neg_text} | Label : {status} ({score * 100:.3f}%)') |
|
``` |