Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- mcysqrd/mojo_code
|
5 |
---
|
6 |
+
|
7 |
+
```
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(merged_model_path,trust_remote_code=True,use_fast=True)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
merged_model_path,
|
11 |
+
device_map={"": 0},
|
12 |
+
use_cache=True,
|
13 |
+
trust_remote_code=True,
|
14 |
+
attn_implementation="flash_attention_2",
|
15 |
+
torch_dtype=torch.bfloat16
|
16 |
+
)
|
17 |
+
|
18 |
+
input_text = """<|fim▁begin|>
|
19 |
+
from algorithm import parallelize, vectorize
|
20 |
+
from benchmark import Benchmark
|
21 |
+
from complex import ComplexSIMD, ComplexFloat64
|
22 |
+
from math import iota
|
23 |
+
from os import env
|
24 |
+
from python import Python
|
25 |
+
from python.object import PythonObject
|
26 |
+
from runtime.llcl import num_cores, Runtime
|
27 |
+
from tensor import Tensor
|
28 |
+
from utils.index import Index
|
29 |
+
|
30 |
+
|
31 |
+
alias float_type = DType.float64
|
32 |
+
alias simd_width = simdwidthof[float_type]()
|
33 |
+
|
34 |
+
alias width = 960
|
35 |
+
alias height = 960
|
36 |
+
alias MAX_ITERS = 200
|
37 |
+
|
38 |
+
alias min_x = -2.0
|
39 |
+
alias max_x = 0.6
|
40 |
+
alias min_y = -1.5
|
41 |
+
alias max_y = 1.5
|
42 |
+
|
43 |
+
fn mandelbrot_kernel_SIMD[
|
44 |
+
simd_width: Int
|
45 |
+
](c: ComplexSIMD[float_type, simd_width]) -> SIMD[float_type, simd_width]:
|
46 |
+
let cx = c.re
|
47 |
+
let cy = c.im
|
48 |
+
var x = SIMD[float_type, simd_width](0)
|
49 |
+
var y = SIMD[float_type, simd_width](0)
|
50 |
+
var y2 = SIMD[float_type, simd_width](0)
|
51 |
+
var iters = SIMD[float_type, simd_width](0)
|
52 |
+
|
53 |
+
var t: SIMD[DType.bool, simd_width] = True
|
54 |
+
for i in range(MAX_ITERS):
|
55 |
+
if not t.reduce_or():
|
56 |
+
break
|
57 |
+
y2 = y*y
|
58 |
+
y = x.fma(y + y, cy)
|
59 |
+
t = x.fma(x, y2) <= 4
|
60 |
+
x = x.fma(x, cx - y2)
|
61 |
+
iters = t.select(iters + 1, iters)
|
62 |
+
return iters
|
63 |
+
|
64 |
+
fn compare():
|
65 |
+
let t = Tensor[float_type](height, width)
|
66 |
+
|
67 |
+
@parameter
|
68 |
+
fn worker(row: Int):
|
69 |
+
let scale_x = (max_x - min_x) / width
|
70 |
+
let scale_y = (max_y - min_y) / height
|
71 |
+
<|fim▁hole|>
|
72 |
+
fn main():
|
73 |
+
compare()
|
74 |
+
<|fim▁end|>"""
|
75 |
+
|
76 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
77 |
+
outputs = model.generate(**inputs, max_length=547+200)
|
78 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|
79 |
+
|
80 |
+
def stream(user_prompt):
|
81 |
+
runtimeFlag = "cuda:0"
|
82 |
+
inputs = tokenizer([user_prompt], return_tensors="pt").to(runtimeFlag)
|
83 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
84 |
+
_ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)
|
85 |
+
|
86 |
+
stream(input_text)
|
87 |
+
```
|