Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / configs /dnlnet /README.md
mccaly's picture
Upload 660 files
b13b124
|
raw
history blame
7.54 kB

Disentangled Non-Local Neural Networks

Introduction

[ALGORITHM]

This example is to reproduce "Disentangled Non-Local Neural Networks" for semantic segmentation. It is still in progress.

Citation

@misc{yin2020disentangled,
    title={Disentangled Non-Local Neural Networks},
    author={Minghao Yin and Zhuliang Yao and Yue Cao and Xiu Li and Zheng Zhang and Stephen Lin and Han Hu},
    year={2020},
    booktitle={ECCV}
}

Results and models (in progress)

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) download
dnl R-50-D8 512x1024 40000 7.3 2.56 78.61 - model | log
dnl R-101-D8 512x1024 40000 10.9 1.96 78.31 - model | log
dnl R-50-D8 769x769 40000 9.2 1.50 78.44 80.27 model | log
dnl R-101-D8 769x769 40000 12.6 1.02 76.39 77.77 model | log
dnl R-50-D8 512x1024 80000 - - 79.33 - model | log
dnl R-101-D8 512x1024 80000 - - 80.41 - model | log
dnl R-50-D8 769x769 80000 - - 79.36 80.70 model | log
dnl R-101-D8 769x769 80000 - - 79.41 80.68 model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) download
DNL R-50-D8 512x512 80000 8.8 20.66 41.76 42.99 model | log
DNL R-101-D8 512x512 80000 12.8 12.54 43.76 44.91 model | log
DNL R-50-D8 512x512 160000 - - 41.87 43.01 model | log
DNL R-101-D8 512x512 160000 - - 44.25 45.78 model | log