Disentangled Non-Local Neural Networks
Introduction
[ALGORITHM]
This example is to reproduce "Disentangled Non-Local Neural Networks" for semantic segmentation. It is still in progress.
Citation
@misc{yin2020disentangled,
title={Disentangled Non-Local Neural Networks},
author={Minghao Yin and Zhuliang Yao and Yue Cao and Xiu Li and Zheng Zhang and Stephen Lin and Han Hu},
year={2020},
booktitle={ECCV}
}
Results and models (in progress)
Cityscapes
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
---|---|---|---|---|---|---|---|---|
dnl | R-50-D8 | 512x1024 | 40000 | 7.3 | 2.56 | 78.61 | - | model | log |
dnl | R-101-D8 | 512x1024 | 40000 | 10.9 | 1.96 | 78.31 | - | model | log |
dnl | R-50-D8 | 769x769 | 40000 | 9.2 | 1.50 | 78.44 | 80.27 | model | log |
dnl | R-101-D8 | 769x769 | 40000 | 12.6 | 1.02 | 76.39 | 77.77 | model | log |
dnl | R-50-D8 | 512x1024 | 80000 | - | - | 79.33 | - | model | log |
dnl | R-101-D8 | 512x1024 | 80000 | - | - | 80.41 | - | model | log |
dnl | R-50-D8 | 769x769 | 80000 | - | - | 79.36 | 80.70 | model | log |
dnl | R-101-D8 | 769x769 | 80000 | - | - | 79.41 | 80.68 | model | log |
ADE20K
Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | mIoU | mIoU(ms+flip) | download |
---|---|---|---|---|---|---|---|---|
DNL | R-50-D8 | 512x512 | 80000 | 8.8 | 20.66 | 41.76 | 42.99 | model | log |
DNL | R-101-D8 | 512x512 | 80000 | 12.8 | 12.54 | 43.76 | 44.91 | model | log |
DNL | R-50-D8 | 512x512 | 160000 | - | - | 41.87 | 43.01 | model | log |
DNL | R-101-D8 | 512x512 | 160000 | - | - | 44.25 | 45.78 | model | log |