U-Net: Convolutional Networks for Biomedical Image Segmentation
Introduction
[ALGORITHM]
@inproceedings{ronneberger2015u,
title={U-net: Convolutional networks for biomedical image segmentation},
author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
booktitle={International Conference on Medical image computing and computer-assisted intervention},
pages={234--241},
year={2015},
organization={Springer}
}
Results and models
DRIVE
Backbone |
Head |
Image Size |
Crop Size |
Stride |
Lr schd |
Mem (GB) |
Inf time (fps) |
Dice |
download |
UNet-S5-D16 |
FCN |
584x565 |
64x64 |
42x42 |
40000 |
0.680 |
- |
78.67 |
model | log |
UNet-S5-D16 |
PSPNet |
584x565 |
64x64 |
42x42 |
40000 |
0.599 |
- |
78.62 |
model | log |
UNet-S5-D16 |
DeepLabV3 |
584x565 |
64x64 |
42x42 |
40000 |
0.596 |
- |
78.69 |
model | log |
STARE
Backbone |
Head |
Image Size |
Crop Size |
Stride |
Lr schd |
Mem (GB) |
Inf time (fps) |
Dice |
download |
UNet-S5-D16 |
FCN |
605x700 |
128x128 |
85x85 |
40000 |
0.968 |
- |
81.02 |
model | log |
UNet-S5-D16 |
PSPNet |
605x700 |
128x128 |
85x85 |
40000 |
0.982 |
- |
81.22 |
model | log |
UNet-S5-D16 |
DeepLabV3 |
605x700 |
128x128 |
85x85 |
40000 |
0.999 |
- |
80.93 |
model | log |
CHASE_DB1
Backbone |
Head |
Image Size |
Crop Size |
Stride |
Lr schd |
Mem (GB) |
Inf time (fps) |
Dice |
download |
UNet-S5-D16 |
FCN |
960x999 |
128x128 |
85x85 |
40000 |
0.968 |
- |
80.24 |
model | log |
UNet-S5-D16 |
PSPNet |
960x999 |
128x128 |
85x85 |
40000 |
0.982 |
- |
80.36 |
model | log |
UNet-S5-D16 |
DeepLabV3 |
960x999 |
128x128 |
85x85 |
40000 |
0.999 |
- |
80.47 |
model | log |
HRF
Backbone |
Head |
Image Size |
Crop Size |
Stride |
Lr schd |
Mem (GB) |
Inf time (fps) |
Dice |
download |
UNet-S5-D16 |
FCN |
2336x3504 |
256x256 |
170x170 |
40000 |
2.525 |
- |
79.45 |
model | log |
UNet-S5-D16 |
PSPNet |
2336x3504 |
256x256 |
170x170 |
40000 |
2.588 |
- |
80.07 |
model | log |
UNet-S5-D16 |
DeepLabV3 |
2336x3504 |
256x256 |
170x170 |
40000 |
2.604 |
- |
80.21 |
model | log |