Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / configs /unet /README.md
mccaly's picture
Upload 660 files
b13b124
|
raw
history blame
9.84 kB

U-Net: Convolutional Networks for Biomedical Image Segmentation

Introduction

[ALGORITHM]

@inproceedings{ronneberger2015u,
  title={U-net: Convolutional networks for biomedical image segmentation},
  author={Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
  booktitle={International Conference on Medical image computing and computer-assisted intervention},
  pages={234--241},
  year={2015},
  organization={Springer}
}

Results and models

DRIVE

Backbone Head Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice download
UNet-S5-D16 FCN 584x565 64x64 42x42 40000 0.680 - 78.67 model | log
UNet-S5-D16 PSPNet 584x565 64x64 42x42 40000 0.599 - 78.62 model | log
UNet-S5-D16 DeepLabV3 584x565 64x64 42x42 40000 0.596 - 78.69 model | log

STARE

Backbone Head Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice download
UNet-S5-D16 FCN 605x700 128x128 85x85 40000 0.968 - 81.02 model | log
UNet-S5-D16 PSPNet 605x700 128x128 85x85 40000 0.982 - 81.22 model | log
UNet-S5-D16 DeepLabV3 605x700 128x128 85x85 40000 0.999 - 80.93 model | log

CHASE_DB1

Backbone Head Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice download
UNet-S5-D16 FCN 960x999 128x128 85x85 40000 0.968 - 80.24 model | log
UNet-S5-D16 PSPNet 960x999 128x128 85x85 40000 0.982 - 80.36 model | log
UNet-S5-D16 DeepLabV3 960x999 128x128 85x85 40000 0.999 - 80.47 model | log

HRF

Backbone Head Image Size Crop Size Stride Lr schd Mem (GB) Inf time (fps) Dice download
UNet-S5-D16 FCN 2336x3504 256x256 170x170 40000 2.525 - 79.45 model | log
UNet-S5-D16 PSPNet 2336x3504 256x256 170x170 40000 2.588 - 80.07 model | log
UNet-S5-D16 DeepLabV3 2336x3504 256x256 170x170 40000 2.604 - 80.21 model | log