Image Segmentation
Transformers
PyTorch
upernet
Inference Endpoints
test2 / configs /danet /README.md
mccaly's picture
Upload 660 files
b13b124
|
raw
history blame
10.2 kB

Dual Attention Network for Scene Segmentation

Introduction

[ALGORITHM]

@article{fu2018dual,
  title={Dual Attention Network for Scene Segmentation},
  author={Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu},
  booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}

Results and models

Cityscapes

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) download
DANet R-50-D8 512x1024 40000 7.4 2.66 78.74 - model | log
DANet R-101-D8 512x1024 40000 10.9 1.99 80.52 - model | log
DANet R-50-D8 769x769 40000 8.8 1.56 78.88 80.62 model | log
DANet R-101-D8 769x769 40000 12.8 1.07 79.88 81.47 model | log
DANet R-50-D8 512x1024 80000 - - 79.34 - model | log
DANet R-101-D8 512x1024 80000 - - 80.41 - model | log
DANet R-50-D8 769x769 80000 - - 79.27 80.96 model | log
DANet R-101-D8 769x769 80000 - - 80.47 82.02 model | log

ADE20K

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) download
DANet R-50-D8 512x512 80000 11.5 21.20 41.66 42.90 model | log
DANet R-101-D8 512x512 80000 15 14.18 43.64 45.19 model | log
DANet R-50-D8 512x512 160000 - - 42.45 43.25 model | log
DANet R-101-D8 512x512 160000 - - 44.17 45.02 model | log

Pascal VOC 2012 + Aug

Method Backbone Crop Size Lr schd Mem (GB) Inf time (fps) mIoU mIoU(ms+flip) download
DANet R-50-D8 512x512 20000 6.5 20.94 74.45 75.69 model | log
DANet R-101-D8 512x512 20000 9.9 13.76 76.02 77.23 model | log
DANet R-50-D8 512x512 40000 - - 76.37 77.29 model | log
DANet R-101-D8 512x512 40000 - - 76.51 77.32 model | log