Tutorial 2: Customize Datasets
Customize datasets by reorganizing data
The simplest way is to convert your dataset to organize your data into folders.
An example of file structure is as followed.
βββ data
β βββ my_dataset
β β βββ img_dir
β β β βββ train
β β β β βββ xxx{img_suffix}
β β β β βββ yyy{img_suffix}
β β β β βββ zzz{img_suffix}
β β β βββ val
β β βββ ann_dir
β β β βββ train
β β β β βββ xxx{seg_map_suffix}
β β β β βββ yyy{seg_map_suffix}
β β β β βββ zzz{seg_map_suffix}
β β β βββ val
A training pair will consist of the files with same suffix in img_dir/ann_dir.
If split argument is given, only part of the files in img_dir/ann_dir will be loaded.
We may specify the prefix of files we would like to be included in the split txt.
More specifically, for a split txt like following,
xxx
zzz
Only
data/my_dataset/img_dir/train/xxx{img_suffix},
data/my_dataset/img_dir/train/zzz{img_suffix},
data/my_dataset/ann_dir/train/xxx{seg_map_suffix},
data/my_dataset/ann_dir/train/zzz{seg_map_suffix} will be loaded.
Note: The annotations are images of shape (H, W), the value pixel should fall in range [0, num_classes - 1].
You may use 'P' mode of pillow to create your annotation image with color.
Customize datasets by mixing dataset
MMSegmentation also supports to mix dataset for training. Currently it supports to concat and repeat datasets.
Repeat dataset
We use RepeatDataset as wrapper to repeat the dataset.
For example, suppose the original dataset is Dataset_A, to repeat it, the config looks like the following
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict( # This is the original config of Dataset_A
type='Dataset_A',
...
pipeline=train_pipeline
)
)
Concatenate dataset
There 2 ways to concatenate the dataset.
If the datasets you want to concatenate are in the same type with different annotation files, you can concatenate the dataset configs like the following.
You may concatenate two
ann_dir.dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = ['anno_dir_1', 'anno_dir_2'], pipeline=train_pipeline )You may concatenate two
split.dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = 'anno_dir', split = ['split_1.txt', 'split_2.txt'], pipeline=train_pipeline )You may concatenate two
ann_dirandsplitsimultaneously.dataset_A_train = dict( type='Dataset_A', img_dir = 'img_dir', ann_dir = ['anno_dir_1', 'anno_dir_2'], split = ['split_1.txt', 'split_2.txt'], pipeline=train_pipeline )In this case,
ann_dir_1andann_dir_2are corresponding tosplit_1.txtandsplit_2.txt.
In case the dataset you want to concatenate is different, you can concatenate the dataset configs like the following.
dataset_A_train = dict() dataset_B_train = dict() data = dict( imgs_per_gpu=2, workers_per_gpu=2, train = [ dataset_A_train, dataset_B_train ], val = dataset_A_val, test = dataset_A_test )
A more complex example that repeats Dataset_A and Dataset_B by N and M times, respectively, and then concatenates the repeated datasets is as the following.
dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict(
type='Dataset_A',
...
pipeline=train_pipeline
)
)
dataset_A_val = dict(
...
pipeline=test_pipeline
)
dataset_A_test = dict(
...
pipeline=test_pipeline
)
dataset_B_train = dict(
type='RepeatDataset',
times=M,
dataset=dict(
type='Dataset_B',
...
pipeline=train_pipeline
)
)
data = dict(
imgs_per_gpu=2,
workers_per_gpu=2,
train = [
dataset_A_train,
dataset_B_train
],
val = dataset_A_val,
test = dataset_A_test
)