mayorov-s commited on
Commit
665d997
1 Parent(s): ff5230d

second version

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 57.59 +/- 157.58
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 266.16 +/- 18.78
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f590a0f5c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f590a0f5cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f590a0f5d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f590a0f5dd0>", "_build": "<function ActorCriticPolicy._build at 0x7f590a0f5e60>", "forward": "<function ActorCriticPolicy.forward at 0x7f590a0f5ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f590a0f5f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f590a0fa050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f590a0fa0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f590a0fa170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f590a0fa200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f590a0c3a20>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 200704, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663335142.815542, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACAcBz5w6ZY+Gs9JPaJQVr6noSk9TjkfPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsqGb/QFIZ0CUhpRSlIwBbJRNPQKMAXSUR0B4EjY9Pk7wdX2UKGgGaAloD0MIEEBqE6eOa0CUhpRSlGgVTWwBaBZHQHga/3vhIe51fZQoaAZoCWgPQwg/OnXls6hlwJSGlFKUaBVNogFoFkdAeDytjCpFTnV9lChoBmgJaA9DCPjii/Z4oUfAlIaUUpRoFUvoaBZHQHhB6V+qioN1fZQoaAZoCWgPQwibN04Kc8JoQJSGlFKUaBVNXQFoFkdAeEozGgi/wnV9lChoBmgJaA9DCCmXxi88d2xAlIaUUpRoFU2/AWgWR0B4Via/h2nsdX2UKGgGaAloD0MIRNsxdVcFakCUhpRSlGgVTZIBaBZHQHhgw7Pppvh1fZQoaAZoCWgPQwiEvB5MiqxqQJSGlFKUaBVNagFoFkdAeIn2MsH0LHV9lChoBmgJaA9DCMNHxJRIkWdAlIaUUpRoFU2yAWgWR0B4m5LSNOuadX2UKGgGaAloD0MIrU1je60Za0CUhpRSlGgVTQUCaBZHQHiuF1r6+Fl1fZQoaAZoCWgPQwhHHogs0pgywJSGlFKUaBVNPAFoFkdAeLWbtZ3cHnV9lChoBmgJaA9DCJ6ymq4nrknAlIaUUpRoFU2cAWgWR0B4wJOzposadX2UKGgGaAloD0MIEEBqEydfMsCUhpRSlGgVTTABaBZHQHjetNFjNIN1fZQoaAZoCWgPQwgjTbwDvAloQJSGlFKUaBVNcAFoFkdAeOd4ubqhUXV9lChoBmgJaA9DCDJxqyCGWGtAlIaUUpRoFU2VAWgWR0B48xqynk1edX2UKGgGaAloD0MI28GIfQIo+D+UhpRSlGgVTRsBaBZHQHj57VJ+UhV1fZQoaAZoCWgPQwjeyafHtthmQJSGlFKUaBVN3wFoFkdAeQaf7rLQonV9lChoBmgJaA9DCMwIbw/CWGdAlIaUUpRoFU2IAWgWR0B5ELA1vVEvdX2UKGgGaAloD0MI4lrtYS+sbECUhpRSlGgVTbYBaBZHQHkzpbt7a7F1fZQoaAZoCWgPQwgaFTjZBl4xwJSGlFKUaBVNYAFoFkdAeTxpOvdM03V9lChoBmgJaA9DCGQ7308NwGNAlIaUUpRoFU0sAmgWR0B5SoPOIInjdX2UKGgGaAloD0MIumsJ+aBsYUCUhpRSlGgVTTIDaBZHQHl6TQ/oq1B1fZQoaAZoCWgPQwjsGFdcHLtmQJSGlFKUaBVN9AFoFkdAeYmikfs/p3V9lChoBmgJaA9DCHCWkuUkj2RAlIaUUpRoFU1yAWgWR0B5k2UOd5IIdX2UKGgGaAloD0MIYtnMIalJN0CUhpRSlGgVS9loFkdAeZhH1OCXhXV9lChoBmgJaA9DCEPLun8sV3BAlIaUUpRoFU19AWgWR0B5ooGkep4sdX2UKGgGaAloD0MI12fO+tSdcECUhpRSlGgVTZwBaBZHQHms5UYKpkx1fZQoaAZoCWgPQwhEherm4gxUwJSGlFKUaBVNNQFoFkdAecs/oq0+knV9lChoBmgJaA9DCA98DFacPFfAlIaUUpRoFU0NAmgWR0B518CdSVGDdX2UKGgGaAloD0MIFf2hmSeGZkCUhpRSlGgVTbgBaBZHQHnkiCJ40Mx1fZQoaAZoCWgPQwjRIAVPIddJwJSGlFKUaBVL9mgWR0B56ief7JnydX2UKGgGaAloD0MIup7ounC1ZUCUhpRSlGgVTU4CaBZHQHn5SZ8a4tp1fZQoaAZoCWgPQwgCKbFre4MiwJSGlFKUaBVNfwFoFkdAehnJwbVBlnV9lChoBmgJaA9DCDKrd7gdckzAlIaUUpRoFU0kAWgWR0B6IQDDCP6sdX2UKGgGaAloD0MI5e/eUWM6SsCUhpRSlGgVTTgBaBZHQHoo1vAGjbl1fZQoaAZoCWgPQwg0aOif4FlvQJSGlFKUaBVNkwFoFkdAejMDM/yGz3V9lChoBmgJaA9DCFThz/DmLG9AlIaUUpRoFU2zAWgWR0B6PZxm03OwdX2UKGgGaAloD0MIsvFgi91WVMCUhpRSlGgVTfIBaBZHQHphasQumJp1fZQoaAZoCWgPQwgxem6hK6VCwJSGlFKUaBVNYwFoFkdAemohUipvP3V9lChoBmgJaA9DCHWOAdlr1mtAlIaUUpRoFU2oAWgWR0B6dVclgMMJdX2UKGgGaAloD0MIiCzSxLvCYUCUhpRSlGgVTbgBaBZHQHqCS+lCTll1fZQoaAZoCWgPQwgpBHKJI/1KwJSGlFKUaBVNYgFoFkdAeopWOp84P3V9lChoBmgJaA9DCMdJYd7jwm5AlIaUUpRoFU2ZAWgWR0B6rR2r4nF6dX2UKGgGaAloD0MI1qwzvq8aYkCUhpRSlGgVTXYCaBZHQHq/1nyup0h1fZQoaAZoCWgPQwhPdF34wQRuQJSGlFKUaBVNxgJoFkdAetXRNyo4uXV9lChoBmgJaA9DCKzGEtZGcmtAlIaUUpRoFU2nAWgWR0B64ijVQQ+VdX2UKGgGaAloD0MIdcqjG+FpYkCUhpRSlGgVTXUCaBZHQHsMahtcfNl1fZQoaAZoCWgPQwh2OLpKd8NgwJSGlFKUaBVNLwJoFkdAexwjk+5e7nV9lChoBmgJaA9DCHtP5bSnGGtAlIaUUpRoFU2kAWgWR0B7J9iMHbAUdX2UKGgGaAloD0MIrtaJy/F/WMCUhpRSlGgVTVwCaBZHQHtReGKyfL91fZQoaAZoCWgPQwj2CDVDKv9pQJSGlFKUaBVN1wFoFkdAe16NgBtDUnV9lChoBmgJaA9DCHGRe7q6Im9AlIaUUpRoFU2HAWgWR0B7aL7SApazdX2UKGgGaAloD0MIML39uehVb0CUhpRSlGgVTYQBaBZHQHtycm8dxQ11fZQoaAZoCWgPQwiWehaE8gRnQJSGlFKUaBVNtwFoFkdAe3+y1eBxxXV9lChoBmgJaA9DCOmayTfbhGVAlIaUUpRoFU3mAWgWR0B7pHtb9qDcdX2UKGgGaAloD0MImIbhI2KSbECUhpRSlGgVTY4CaBZHQHu1TdcjZ+R1fZQoaAZoCWgPQwiOyHcpNX1wQJSGlFKUaBVNaAFoFkdAe77Mbm2b5XV9lChoBmgJaA9DCMJNRpXhtm5AlIaUUpRoFU2JAWgWR0B7yThXKbKBdX2UKGgGaAloD0MI+s+aH39dTMCUhpRSlGgVTVEBaBZHQHvSGwV0tAd1fZQoaAZoCWgPQwiSrwRS4g9wQJSGlFKUaBVNWwFoFkdAe/IxMWXTmXV9lChoBmgJaA9DCJzB3y9m0WZAlIaUUpRoFU3hAWgWR0B7/ssPJ7swdX2UKGgGaAloD0MI2zAKgscObUCUhpRSlGgVTaQBaBZHQHwIdCAtnPF1fZQoaAZoCWgPQwiY3ZOHBbduQJSGlFKUaBVNYwFoFkdAfBFn+hoM8nV9lChoBmgJaA9DCK0Tl+MVBm5AlIaUUpRoFU17AWgWR0B8G1JBgNPQdX2UKGgGaAloD0MI+5RjsviNcECUhpRSlGgVTW8BaBZHQHw8EV32VVx1fZQoaAZoCWgPQwhQ/1nz40VVwJSGlFKUaBVNNgFoFkdAfENyY5T6znV9lChoBmgJaA9DCMmrcwzIcl3AlIaUUpRoFU2PAmgWR0B8U84YJmdzdX2UKGgGaAloD0MIyLYMOMtYaUCUhpRSlGgVTW8BaBZHQHxdlXeWOZN1fZQoaAZoCWgPQwh7EW3H1GRtQJSGlFKUaBVNaQFoFkdAfGYCuU2UCHV9lChoBmgJaA9DCBlybD3D329AlIaUUpRoFU1nAWgWR0B8h+PIXCTEdX2UKGgGaAloD0MIvFmD99VsbkCUhpRSlGgVTUgBaBZHQHyQYiPhhph1fZQoaAZoCWgPQwjN6bKY2HRDwJSGlFKUaBVLxmgWR0B8lMPBi1ArdX2UKGgGaAloD0MIvcPt0LAUQsCUhpRSlGgVS/loFkdAfJqJ7b+LnHV9lChoBmgJaA9DCFPqknGMkD7AlIaUUpRoFU0nAWgWR0B8oR+PRzBAdX2UKGgGaAloD0MIpoC0/4HzbECUhpRSlGgVTWQBaBZHQHyqjEBKcut1fZQoaAZoCWgPQwhg6Xx4lohKwJSGlFKUaBVNawFoFkdAfLMBeXzDoHV9lChoBmgJaA9DCLluSnmtkGlAlIaUUpRoFU1nAWgWR0B81FnvlU6xdX2UKGgGaAloD0MIBvGBHf8FD8CUhpRSlGgVS6xoFkdAfNf04iosI3V9lChoBmgJaA9DCG5sdqR6lmdAlIaUUpRoFU3YAWgWR0B85GsHSncddX2UKGgGaAloD0MIgVoMHqbHSMCUhpRSlGgVTQIBaBZHQHzqlxjriVB1fZQoaAZoCWgPQwiHMlTFVEJAwJSGlFKUaBVNZQFoFkdAfPNKtxMnJHV9lChoBmgJaA9DCIbJVMGoEEXAlIaUUpRoFU0PAWgWR0B8+bDUExIrdX2UKGgGaAloD0MIi8OZX00Ta0CUhpRSlGgVTYcBaBZHQH0bIgV45cV1fZQoaAZoCWgPQwgGS3UBL1lGwJSGlFKUaBVL82gWR0B9IPc580DVdX2UKGgGaAloD0MIlpS7z/HRbECUhpRSlGgVTcQBaBZHQH0sEhFEy+J1fZQoaAZoCWgPQwgbutkfqLRoQJSGlFKUaBVNdQFoFkdAfTYJJGvwE3V9lChoBmgJaA9DCHE9CtcjDWlAlIaUUpRoFU2KAWgWR0B9QPtdAxBWdX2UKGgGaAloD0MI5gXYRyczbkCUhpRSlGgVTaABaBZHQH1LoZAIIGB1fZQoaAZoCWgPQwgmjdE6qv5HwJSGlFKUaBVL32gWR0B9aBZFG5MDdX2UKGgGaAloD0MICyQofowFSMCUhpRSlGgVS/BoFkdAfW26ErXlKnV9lChoBmgJaA9DCLGnHf6aWVLAlIaUUpRoFU0pAWgWR0B9dMfdRBNVdX2UKGgGaAloD0MILEXylcDnbECUhpRSlGgVTY4BaBZHQH1/xsl9jPR1fZQoaAZoCWgPQwh3SDFAoi9CwJSGlFKUaBVNOwFoFkdAfYcyRB/qgXV9lChoBmgJaA9DCI1feCXJjGNAlIaUUpRoFU1MAmgWR0B9mC87IT4+dX2UKGgGaAloD0MIEVFM3gBuWMCUhpRSlGgVTUkBaBZHQH228gpz90l1fZQoaAZoCWgPQwhe9utOd2RFwJSGlFKUaBVNLwFoFkdAfb5U0elsQHV9lChoBmgJaA9DCM+/XfbrK1HAlIaUUpRoFUvfaBZHQH3DW5Yoy9F1fZQoaAZoCWgPQwg9C0J5H2lNwJSGlFKUaBVNkwFoFkdAfc3S3LFGX3V9lChoBmgJaA9DCMBeYcG9nXBAlIaUUpRoFU1pAWgWR0B91laV2Rq5dX2UKGgGaAloD0MI31LOF3ujR8CUhpRSlGgVTQ4BaBZHQH3cc2NvOyF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2abbf35710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2abbf357a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2abbf35830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2abbf358c0>", "_build": "<function ActorCriticPolicy._build at 0x7f2abbf35950>", "forward": "<function ActorCriticPolicy.forward at 0x7f2abbf359e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2abbf35a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2abbf35b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2abbf35b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2abbf35c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2abbf35cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f2abbf77c60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 819200, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663409099.5027082, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7rJfdzo8YkCUhpRSlIwBbJRN6AOMAXSUR0CQbLEETxoadX2UKGgGaAloD0MIbVM8LqqdZECUhpRSlGgVTegDaBZHQJBtTst03fh1fZQoaAZoCWgPQwitaklHOTFlQJSGlFKUaBVN6ANoFkdAkHESjcmBv3V9lChoBmgJaA9DCCVZh6OrhWJAlIaUUpRoFU3oA2gWR0CQdMMFlkH2dX2UKGgGaAloD0MIRIts5/s5SUCUhpRSlGgVS6FoFkdAkHT4/NZ/1HV9lChoBmgJaA9DCBh6xOi5TU1AlIaUUpRoFUu5aBZHQJB2xowmE5B1fZQoaAZoCWgPQwjX9+EgoSViQJSGlFKUaBVN6ANoFkdAkHeqHCXQdHV9lChoBmgJaA9DCEsi+yBLAmJAlIaUUpRoFU3oA2gWR0CQeVIMBp6AdX2UKGgGaAloD0MIeev822WvYkCUhpRSlGgVTegDaBZHQJB7PGWD6Fd1fZQoaAZoCWgPQwhMwoU8gs1HQJSGlFKUaBVLyGgWR0CQe5+j/MnrdX2UKGgGaAloD0MIY35uaMpQUUCUhpRSlGgVS5VoFkdAkIDksBhhIHV9lChoBmgJaA9DCMhdhCnKymFAlIaUUpRoFU3oA2gWR0CQg2GNrCWNdX2UKGgGaAloD0MITI3Qz9SJYkCUhpRSlGgVTegDaBZHQJCDpeF+NLl1fZQoaAZoCWgPQwhivVErzNBhQJSGlFKUaBVN6ANoFkdAkIgS8zyjHnV9lChoBmgJaA9DCCUDQBU3aEVAlIaUUpRoFUvHaBZHQJCLikzoEB91fZQoaAZoCWgPQwhiSbn7HBZlQJSGlFKUaBVN6ANoFkdAkI1gJXyRS3V9lChoBmgJaA9DCJRoyePphWdAlIaUUpRoFU3oA2gWR0CQjX5TIeYEdX2UKGgGaAloD0MIKV5lbVOsTECUhpRSlGgVS8poFkdAkI4rJbMX8HV9lChoBmgJaA9DCCOe7GZGDVFAlIaUUpRoFUumaBZHQJCQ5sUIsy11fZQoaAZoCWgPQwgSvvc3aHtlQJSGlFKUaBVN6ANoFkdAkJQhvegte3V9lChoBmgJaA9DCC8xlumXQ2FAlIaUUpRoFU3oA2gWR0CQl0KhtcfOdX2UKGgGaAloD0MIumsJ+aAfYkCUhpRSlGgVTegDaBZHQJCeX1K5Cnh1fZQoaAZoCWgPQwjE7GXb6XlnQJSGlFKUaBVN6ANoFkdAkKKB0Qsf73V9lChoBmgJaA9DCDGVfsJZp2RAlIaUUpRoFU3oA2gWR0CQqkpcX3xndX2UKGgGaAloD0MIxF4oYDunXUCUhpRSlGgVTegDaBZHQJCqhYuCf6J1fZQoaAZoCWgPQwjmsWZkEBRkQJSGlFKUaBVN6ANoFkdAkKxU1EVnEnV9lChoBmgJaA9DCBzsTQxJ2GNAlIaUUpRoFU3oA2gWR0CQrSynDR+jdX2UKGgGaAloD0MIjj9R2TB1ZUCUhpRSlGgVTegDaBZHQJCwuySmqHZ1fZQoaAZoCWgPQwjHoBNCB0RnQJSGlFKUaBVN6ANoFkdAkLEdAood/HV9lChoBmgJaA9DCEaYolyatWFAlIaUUpRoFU3oA2gWR0CQ9omdy1eCdX2UKGgGaAloD0MIoWmJldE4NkCUhpRSlGgVS8poFkdAkPjXEdeY2XV9lChoBmgJaA9DCMDo8uZwrWRAlIaUUpRoFU3oA2gWR0CQ/xDE3sHCdX2UKGgGaAloD0MIEce6uI0qZkCUhpRSlGgVTegDaBZHQJEA923azu51fZQoaAZoCWgPQwiUv3tHjb9jQJSGlFKUaBVN6ANoFkdAkQEW+sYEXHV9lChoBmgJaA9DCM9OBkdJfmdAlIaUUpRoFU3oA2gWR0CRAcQkHD77dX2UKGgGaAloD0MI/TBCeLSbZ0CUhpRSlGgVTegDaBZHQJEEcV6/qPh1fZQoaAZoCWgPQwiLNse5zfNmQJSGlFKUaBVN6ANoFkdAkQdyqlxffHV9lChoBmgJaA9DCMkcy7tqoGVAlIaUUpRoFU3oA2gWR0CRCm/qgRK6dX2UKGgGaAloD0MIza/mAEHWZ0CUhpRSlGgVTegDaBZHQJESbaTOgQJ1fZQoaAZoCWgPQwgK+DWShF5iQJSGlFKUaBVN6ANoFkdAkRc2z0HyE3V9lChoBmgJaA9DCFhWmpQCPmZAlIaUUpRoFU3oA2gWR0CRH8yEL6UJdX2UKGgGaAloD0MIJqq3BrYpZUCUhpRSlGgVTegDaBZHQJEgCsdT5wh1fZQoaAZoCWgPQwhzTBb3H8tPQJSGlFKUaBVL2GgWR0CRIBqTKT0QdX2UKGgGaAloD0MIV+4FZoUsYUCUhpRSlGgVTegDaBZHQJEiBSBK+SN1fZQoaAZoCWgPQwiOHr+3aXpkQJSGlFKUaBVN6ANoFkdAkSLxh+fAbnV9lChoBmgJaA9DCH79EBssm19AlIaUUpRoFU3oA2gWR0CRJzk5p8F7dX2UKGgGaAloD0MIUWnEzL4KY0CUhpRSlGgVTegDaBZHQJEwCjua4MF1fZQoaAZoCWgPQwgt6pPc4ZhmQJSGlFKUaBVN6ANoFkdAkTKgnc+JQHV9lChoBmgJaA9DCIJy277Ht2ZAlIaUUpRoFU3oA2gWR0CROSYGdI5HdX2UKGgGaAloD0MI9gg1Q6rBYECUhpRSlGgVTegDaBZHQJE7D05EMLF1fZQoaAZoCWgPQwh+x/DYz2BkQJSGlFKUaBVN6ANoFkdAkTssaS9ug3V9lChoBmgJaA9DCFjmrboOzl5AlIaUUpRoFU3oA2gWR0CRO99WIXTFdX2UKGgGaAloD0MIWmQ7388JY0CUhpRSlGgVTegDaBZHQJE+jfvWpZR1fZQoaAZoCWgPQwiyZfm6jD9jQJSGlFKUaBVN6ANoFkdAkUFxjnV5KXV9lChoBmgJaA9DCPuytFPzwGNAlIaUUpRoFU3oA2gWR0CRRFZ88cMmdX2UKGgGaAloD0MIK98zEiGvY0CUhpRSlGgVTegDaBZHQJFQaQ2dd3V1fZQoaAZoCWgPQwit+fGXlqNkQJSGlFKUaBVN6ANoFkdAkVkb6k6903V9lChoBmgJaA9DCOylKQKc62RAlIaUUpRoFU3oA2gWR0CRWWejVQQ+dX2UKGgGaAloD0MIRl1r79MQYkCUhpRSlGgVTegDaBZHQJFZePkq+al1fZQoaAZoCWgPQwjjGwqfLVplQJSGlFKUaBVN6ANoFkdAkVttYjjaPHV9lChoBmgJaA9DCCcvMgE/TGRAlIaUUpRoFU3oA2gWR0CRXFH6MzdldX2UKGgGaAloD0MIveXqx6ZZZkCUhpRSlGgVTegDaBZHQJFgNipeeFt1fZQoaAZoCWgPQwjnj2ltGvsgQJSGlFKUaBVLrmgWR0CRYoWPLgXNdX2UKGgGaAloD0MI5NnlW5+WYkCUhpRSlGgVTegDaBZHQJGlo0hvBJt1fZQoaAZoCWgPQwiJ7e4BOpFlQJSGlFKUaBVN6ANoFkdAkagWG7Bfr3V9lChoBmgJaA9DCIigavRqXWhAlIaUUpRoFU3oA2gWR0CRrnT9sJpndX2UKGgGaAloD0MI1/uNdtzpXkCUhpRSlGgVTegDaBZHQJGwZ4Oc2BJ1fZQoaAZoCWgPQwiCjla1pDRcQJSGlFKUaBVN6ANoFkdAkbCGI9C/oXV9lChoBmgJaA9DCCEE5EuoSmdAlIaUUpRoFU3oA2gWR0CRsTIhhYvGdX2UKGgGaAloD0MIhV5/Ep84ZUCUhpRSlGgVTegDaBZHQJGz634Kx9p1fZQoaAZoCWgPQwhX7C+7J4xiQJSGlFKUaBVN6ANoFkdAkbbti+cpb3V9lChoBmgJaA9DCHdNSGsMAGdAlIaUUpRoFU3oA2gWR0CRubl7dBSldX2UKGgGaAloD0MIldIzvcSdXkCUhpRSlGgVTegDaBZHQJHF45IYm9h1fZQoaAZoCWgPQwgBbECEuHBlQJSGlFKUaBVN6ANoFkdAkc7srupjt3V9lChoBmgJaA9DCPtA8s6hFmdAlIaUUpRoFU3oA2gWR0CRzz9rGipOdX2UKGgGaAloD0MIRbsKKT/iZ0CUhpRSlGgVTegDaBZHQJHRRAX2ugZ1fZQoaAZoCWgPQwgqqRPQRItgQJSGlFKUaBVN6ANoFkdAkdJI1DSgG3V9lChoBmgJaA9DCHB9WG9UUmZAlIaUUpRoFU3oA2gWR0CR1mzMibDudX2UKGgGaAloD0MIzSIUW8EAaECUhpRSlGgVTegDaBZHQJHY/CP6sQx1fZQoaAZoCWgPQwh9XBsqxvRiQJSGlFKUaBVN6ANoFkdAkd7CJbdJrnV9lChoBmgJaA9DCHlA2ZSromdAlIaUUpRoFU3oA2gWR0CR4TGrS3LFdX2UKGgGaAloD0MIM40mF+MlZUCUhpRSlGgVTegDaBZHQJHnrrOZ9eB1fZQoaAZoCWgPQwhkrDb/r0IywJSGlFKUaBVLi2gWR0CR6ceJYT0ydX2UKGgGaAloD0MIWtk+5C0BaUCUhpRSlGgVTegDaBZHQJHp13np0Op1fZQoaAZoCWgPQwiF7/0N2rliQJSGlFKUaBVN6ANoFkdAken4rjHXE3V9lChoBmgJaA9DCCV6GcVyElBAlIaUUpRoFU3oA2gWR0CR6rmrbQC0dX2UKGgGaAloD0MIdv9YiI4zZECUhpRSlGgVTegDaBZHQJHtqNxVAA11fZQoaAZoCWgPQwhCJEOOLfNhQJSGlFKUaBVN6ANoFkdAkfD5UT+NtXV9lChoBmgJaA9DCMyXF2CfNGNAlIaUUpRoFU3oA2gWR0CR8931BdD6dX2UKGgGaAloD0MIgdHlzeGxZkCUhpRSlGgVTegDaBZHQJIAIB7u2JB1fZQoaAZoCWgPQwiXi/hOzMBHQJSGlFKUaBVL4GgWR0CSAQvE0iyIdX2UKGgGaAloD0MIFTYDXBDwaECUhpRSlGgVTegDaBZHQJII/Bhx5s11fZQoaAZoCWgPQwhNv0S89dFgQJSGlFKUaBVN6ANoFkdAkglKR+z+m3V9lChoBmgJaA9DCDBinwCK911AlIaUUpRoFU3oA2gWR0CSCzea8YhudX2UKGgGaAloD0MIGED4UKIgUkCUhpRSlGgVS6hoFkdAkguTTKDCg3V9lChoBmgJaA9DCKZfIt66mGdAlIaUUpRoFU3oA2gWR0CSDBwgkka/dX2UKGgGaAloD0MIRkJbziW3YECUhpRSlGgVTegDaBZHQJIQCp++dsl1fZQoaAZoCWgPQwiWICOgQkBmQJSGlFKUaBVN6ANoFkdAkhJkc4o7WHV9lChoBmgJaA9DCIU/w5s1GE5AlIaUUpRoFUvaaBZHQJIXB8ohIOJ1fZQoaAZoCWgPQwgVOq+xS1xiQJSGlFKUaBVN6ANoFkdAkhhO2RaHK3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 150, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_lander_ppo_v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b0bf06a9f0c5c49ffd2bdb49cbd8950737babae3951b1b13f6571812bed7e92
3
+ size 146333
lunar_lander_ppo_v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
lunar_lander_ppo_v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2abbf35710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2abbf357a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2abbf35830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2abbf358c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2abbf35950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2abbf359e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2abbf35a70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2abbf35b00>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2abbf35b90>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2abbf35c20>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2abbf35cb0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f2abbf77c60>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 819200,
46
+ "_total_timesteps": 800000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1663409099.5027082,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.02400000000000002,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7rJfdzo8YkCUhpRSlIwBbJRN6AOMAXSUR0CQbLEETxoadX2UKGgGaAloD0MIbVM8LqqdZECUhpRSlGgVTegDaBZHQJBtTst03fh1fZQoaAZoCWgPQwitaklHOTFlQJSGlFKUaBVN6ANoFkdAkHESjcmBv3V9lChoBmgJaA9DCCVZh6OrhWJAlIaUUpRoFU3oA2gWR0CQdMMFlkH2dX2UKGgGaAloD0MIRIts5/s5SUCUhpRSlGgVS6FoFkdAkHT4/NZ/1HV9lChoBmgJaA9DCBh6xOi5TU1AlIaUUpRoFUu5aBZHQJB2xowmE5B1fZQoaAZoCWgPQwjX9+EgoSViQJSGlFKUaBVN6ANoFkdAkHeqHCXQdHV9lChoBmgJaA9DCEsi+yBLAmJAlIaUUpRoFU3oA2gWR0CQeVIMBp6AdX2UKGgGaAloD0MIeev822WvYkCUhpRSlGgVTegDaBZHQJB7PGWD6Fd1fZQoaAZoCWgPQwhMwoU8gs1HQJSGlFKUaBVLyGgWR0CQe5+j/MnrdX2UKGgGaAloD0MIY35uaMpQUUCUhpRSlGgVS5VoFkdAkIDksBhhIHV9lChoBmgJaA9DCMhdhCnKymFAlIaUUpRoFU3oA2gWR0CQg2GNrCWNdX2UKGgGaAloD0MITI3Qz9SJYkCUhpRSlGgVTegDaBZHQJCDpeF+NLl1fZQoaAZoCWgPQwhivVErzNBhQJSGlFKUaBVN6ANoFkdAkIgS8zyjHnV9lChoBmgJaA9DCCUDQBU3aEVAlIaUUpRoFUvHaBZHQJCLikzoEB91fZQoaAZoCWgPQwhiSbn7HBZlQJSGlFKUaBVN6ANoFkdAkI1gJXyRS3V9lChoBmgJaA9DCJRoyePphWdAlIaUUpRoFU3oA2gWR0CQjX5TIeYEdX2UKGgGaAloD0MIKV5lbVOsTECUhpRSlGgVS8poFkdAkI4rJbMX8HV9lChoBmgJaA9DCCOe7GZGDVFAlIaUUpRoFUumaBZHQJCQ5sUIsy11fZQoaAZoCWgPQwgSvvc3aHtlQJSGlFKUaBVN6ANoFkdAkJQhvegte3V9lChoBmgJaA9DCC8xlumXQ2FAlIaUUpRoFU3oA2gWR0CQl0KhtcfOdX2UKGgGaAloD0MIumsJ+aAfYkCUhpRSlGgVTegDaBZHQJCeX1K5Cnh1fZQoaAZoCWgPQwjE7GXb6XlnQJSGlFKUaBVN6ANoFkdAkKKB0Qsf73V9lChoBmgJaA9DCDGVfsJZp2RAlIaUUpRoFU3oA2gWR0CQqkpcX3xndX2UKGgGaAloD0MIxF4oYDunXUCUhpRSlGgVTegDaBZHQJCqhYuCf6J1fZQoaAZoCWgPQwjmsWZkEBRkQJSGlFKUaBVN6ANoFkdAkKxU1EVnEnV9lChoBmgJaA9DCBzsTQxJ2GNAlIaUUpRoFU3oA2gWR0CQrSynDR+jdX2UKGgGaAloD0MIjj9R2TB1ZUCUhpRSlGgVTegDaBZHQJCwuySmqHZ1fZQoaAZoCWgPQwjHoBNCB0RnQJSGlFKUaBVN6ANoFkdAkLEdAood/HV9lChoBmgJaA9DCEaYolyatWFAlIaUUpRoFU3oA2gWR0CQ9omdy1eCdX2UKGgGaAloD0MIoWmJldE4NkCUhpRSlGgVS8poFkdAkPjXEdeY2XV9lChoBmgJaA9DCMDo8uZwrWRAlIaUUpRoFU3oA2gWR0CQ/xDE3sHCdX2UKGgGaAloD0MIEce6uI0qZkCUhpRSlGgVTegDaBZHQJEA923azu51fZQoaAZoCWgPQwiUv3tHjb9jQJSGlFKUaBVN6ANoFkdAkQEW+sYEXHV9lChoBmgJaA9DCM9OBkdJfmdAlIaUUpRoFU3oA2gWR0CRAcQkHD77dX2UKGgGaAloD0MI/TBCeLSbZ0CUhpRSlGgVTegDaBZHQJEEcV6/qPh1fZQoaAZoCWgPQwiLNse5zfNmQJSGlFKUaBVN6ANoFkdAkQdyqlxffHV9lChoBmgJaA9DCMkcy7tqoGVAlIaUUpRoFU3oA2gWR0CRCm/qgRK6dX2UKGgGaAloD0MIza/mAEHWZ0CUhpRSlGgVTegDaBZHQJESbaTOgQJ1fZQoaAZoCWgPQwgK+DWShF5iQJSGlFKUaBVN6ANoFkdAkRc2z0HyE3V9lChoBmgJaA9DCFhWmpQCPmZAlIaUUpRoFU3oA2gWR0CRH8yEL6UJdX2UKGgGaAloD0MIJqq3BrYpZUCUhpRSlGgVTegDaBZHQJEgCsdT5wh1fZQoaAZoCWgPQwhzTBb3H8tPQJSGlFKUaBVL2GgWR0CRIBqTKT0QdX2UKGgGaAloD0MIV+4FZoUsYUCUhpRSlGgVTegDaBZHQJEiBSBK+SN1fZQoaAZoCWgPQwiOHr+3aXpkQJSGlFKUaBVN6ANoFkdAkSLxh+fAbnV9lChoBmgJaA9DCH79EBssm19AlIaUUpRoFU3oA2gWR0CRJzk5p8F7dX2UKGgGaAloD0MIUWnEzL4KY0CUhpRSlGgVTegDaBZHQJEwCjua4MF1fZQoaAZoCWgPQwgt6pPc4ZhmQJSGlFKUaBVN6ANoFkdAkTKgnc+JQHV9lChoBmgJaA9DCIJy277Ht2ZAlIaUUpRoFU3oA2gWR0CROSYGdI5HdX2UKGgGaAloD0MI9gg1Q6rBYECUhpRSlGgVTegDaBZHQJE7D05EMLF1fZQoaAZoCWgPQwh+x/DYz2BkQJSGlFKUaBVN6ANoFkdAkTssaS9ug3V9lChoBmgJaA9DCFjmrboOzl5AlIaUUpRoFU3oA2gWR0CRO99WIXTFdX2UKGgGaAloD0MIWmQ7388JY0CUhpRSlGgVTegDaBZHQJE+jfvWpZR1fZQoaAZoCWgPQwiyZfm6jD9jQJSGlFKUaBVN6ANoFkdAkUFxjnV5KXV9lChoBmgJaA9DCPuytFPzwGNAlIaUUpRoFU3oA2gWR0CRRFZ88cMmdX2UKGgGaAloD0MIK98zEiGvY0CUhpRSlGgVTegDaBZHQJFQaQ2dd3V1fZQoaAZoCWgPQwit+fGXlqNkQJSGlFKUaBVN6ANoFkdAkVkb6k6903V9lChoBmgJaA9DCOylKQKc62RAlIaUUpRoFU3oA2gWR0CRWWejVQQ+dX2UKGgGaAloD0MIRl1r79MQYkCUhpRSlGgVTegDaBZHQJFZePkq+al1fZQoaAZoCWgPQwjjGwqfLVplQJSGlFKUaBVN6ANoFkdAkVttYjjaPHV9lChoBmgJaA9DCCcvMgE/TGRAlIaUUpRoFU3oA2gWR0CRXFH6MzdldX2UKGgGaAloD0MIveXqx6ZZZkCUhpRSlGgVTegDaBZHQJFgNipeeFt1fZQoaAZoCWgPQwjnj2ltGvsgQJSGlFKUaBVLrmgWR0CRYoWPLgXNdX2UKGgGaAloD0MI5NnlW5+WYkCUhpRSlGgVTegDaBZHQJGlo0hvBJt1fZQoaAZoCWgPQwiJ7e4BOpFlQJSGlFKUaBVN6ANoFkdAkagWG7Bfr3V9lChoBmgJaA9DCIigavRqXWhAlIaUUpRoFU3oA2gWR0CRrnT9sJpndX2UKGgGaAloD0MI1/uNdtzpXkCUhpRSlGgVTegDaBZHQJGwZ4Oc2BJ1fZQoaAZoCWgPQwiCjla1pDRcQJSGlFKUaBVN6ANoFkdAkbCGI9C/oXV9lChoBmgJaA9DCCEE5EuoSmdAlIaUUpRoFU3oA2gWR0CRsTIhhYvGdX2UKGgGaAloD0MIhV5/Ep84ZUCUhpRSlGgVTegDaBZHQJGz634Kx9p1fZQoaAZoCWgPQwhX7C+7J4xiQJSGlFKUaBVN6ANoFkdAkbbti+cpb3V9lChoBmgJaA9DCHdNSGsMAGdAlIaUUpRoFU3oA2gWR0CRubl7dBSldX2UKGgGaAloD0MIldIzvcSdXkCUhpRSlGgVTegDaBZHQJHF45IYm9h1fZQoaAZoCWgPQwgBbECEuHBlQJSGlFKUaBVN6ANoFkdAkc7srupjt3V9lChoBmgJaA9DCPtA8s6hFmdAlIaUUpRoFU3oA2gWR0CRzz9rGipOdX2UKGgGaAloD0MIRbsKKT/iZ0CUhpRSlGgVTegDaBZHQJHRRAX2ugZ1fZQoaAZoCWgPQwgqqRPQRItgQJSGlFKUaBVN6ANoFkdAkdJI1DSgG3V9lChoBmgJaA9DCHB9WG9UUmZAlIaUUpRoFU3oA2gWR0CR1mzMibDudX2UKGgGaAloD0MIzSIUW8EAaECUhpRSlGgVTegDaBZHQJHY/CP6sQx1fZQoaAZoCWgPQwh9XBsqxvRiQJSGlFKUaBVN6ANoFkdAkd7CJbdJrnV9lChoBmgJaA9DCHlA2ZSromdAlIaUUpRoFU3oA2gWR0CR4TGrS3LFdX2UKGgGaAloD0MIM40mF+MlZUCUhpRSlGgVTegDaBZHQJHnrrOZ9eB1fZQoaAZoCWgPQwhkrDb/r0IywJSGlFKUaBVLi2gWR0CR6ceJYT0ydX2UKGgGaAloD0MIWtk+5C0BaUCUhpRSlGgVTegDaBZHQJHp13np0Op1fZQoaAZoCWgPQwiF7/0N2rliQJSGlFKUaBVN6ANoFkdAken4rjHXE3V9lChoBmgJaA9DCCV6GcVyElBAlIaUUpRoFU3oA2gWR0CR6rmrbQC0dX2UKGgGaAloD0MIdv9YiI4zZECUhpRSlGgVTegDaBZHQJHtqNxVAA11fZQoaAZoCWgPQwhCJEOOLfNhQJSGlFKUaBVN6ANoFkdAkfD5UT+NtXV9lChoBmgJaA9DCMyXF2CfNGNAlIaUUpRoFU3oA2gWR0CR8931BdD6dX2UKGgGaAloD0MIgdHlzeGxZkCUhpRSlGgVTegDaBZHQJIAIB7u2JB1fZQoaAZoCWgPQwiXi/hOzMBHQJSGlFKUaBVL4GgWR0CSAQvE0iyIdX2UKGgGaAloD0MIFTYDXBDwaECUhpRSlGgVTegDaBZHQJII/Bhx5s11fZQoaAZoCWgPQwhNv0S89dFgQJSGlFKUaBVN6ANoFkdAkglKR+z+m3V9lChoBmgJaA9DCDBinwCK911AlIaUUpRoFU3oA2gWR0CSCzea8YhudX2UKGgGaAloD0MIGED4UKIgUkCUhpRSlGgVS6hoFkdAkguTTKDCg3V9lChoBmgJaA9DCKZfIt66mGdAlIaUUpRoFU3oA2gWR0CSDBwgkka/dX2UKGgGaAloD0MIRkJbziW3YECUhpRSlGgVTegDaBZHQJIQCp++dsl1fZQoaAZoCWgPQwiWICOgQkBmQJSGlFKUaBVN6ANoFkdAkhJkc4o7WHV9lChoBmgJaA9DCIU/w5s1GE5AlIaUUpRoFUvaaBZHQJIXB8ohIOJ1fZQoaAZoCWgPQwgVOq+xS1xiQJSGlFKUaBVN6ANoFkdAkhhO2RaHK3VlLg=="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 150,
76
+ "n_steps": 2048,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 6,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
lunar_lander_ppo_v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b2859de08017a6e729b7c85465df55a5ee30f4a8ebfcd84571764f72c94fc3c
3
+ size 87993
lunar_lander_ppo_v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d09f153670542921285b19c16a64eab7a2a87769233aef53e9ee57b41779b36c
3
+ size 43201
lunar_lander_ppo_v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander_ppo_v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.14
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 57.59353219053999, "std_reward": 157.5779266226401, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-16T13:57:55.373832"}
 
1
+ {"mean_reward": 266.15551510011994, "std_reward": 18.783927758922708, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-17T10:38:23.242042"}