hello, world!
Browse files- README.md +36 -0
- config.json +1 -0
- lunar_lander_ppo_v1.zip +3 -0
- lunar_lander_ppo_v1/_stable_baselines3_version +1 -0
- lunar_lander_ppo_v1/data +94 -0
- lunar_lander_ppo_v1/policy.optimizer.pth +3 -0
- lunar_lander_ppo_v1/policy.pth +3 -0
- lunar_lander_ppo_v1/pytorch_variables.pth +3 -0
- lunar_lander_ppo_v1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 57.59 +/- 157.58
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f590a0f5c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f590a0f5cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f590a0f5d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f590a0f5dd0>", "_build": "<function ActorCriticPolicy._build at 0x7f590a0f5e60>", "forward": "<function ActorCriticPolicy.forward at 0x7f590a0f5ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f590a0f5f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f590a0fa050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f590a0fa0e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f590a0fa170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f590a0fa200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f590a0c3a20>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 200704, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1663335142.815542, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACAcBz5w6ZY+Gs9JPaJQVr6noSk9TjkfPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsqGb/QFIZ0CUhpRSlIwBbJRNPQKMAXSUR0B4EjY9Pk7wdX2UKGgGaAloD0MIEEBqE6eOa0CUhpRSlGgVTWwBaBZHQHga/3vhIe51fZQoaAZoCWgPQwg/OnXls6hlwJSGlFKUaBVNogFoFkdAeDytjCpFTnV9lChoBmgJaA9DCPjii/Z4oUfAlIaUUpRoFUvoaBZHQHhB6V+qioN1fZQoaAZoCWgPQwibN04Kc8JoQJSGlFKUaBVNXQFoFkdAeEozGgi/wnV9lChoBmgJaA9DCCmXxi88d2xAlIaUUpRoFU2/AWgWR0B4Via/h2nsdX2UKGgGaAloD0MIRNsxdVcFakCUhpRSlGgVTZIBaBZHQHhgw7Pppvh1fZQoaAZoCWgPQwiEvB5MiqxqQJSGlFKUaBVNagFoFkdAeIn2MsH0LHV9lChoBmgJaA9DCMNHxJRIkWdAlIaUUpRoFU2yAWgWR0B4m5LSNOuadX2UKGgGaAloD0MIrU1je60Za0CUhpRSlGgVTQUCaBZHQHiuF1r6+Fl1fZQoaAZoCWgPQwhHHogs0pgywJSGlFKUaBVNPAFoFkdAeLWbtZ3cHnV9lChoBmgJaA9DCJ6ymq4nrknAlIaUUpRoFU2cAWgWR0B4wJOzposadX2UKGgGaAloD0MIEEBqEydfMsCUhpRSlGgVTTABaBZHQHjetNFjNIN1fZQoaAZoCWgPQwgjTbwDvAloQJSGlFKUaBVNcAFoFkdAeOd4ubqhUXV9lChoBmgJaA9DCDJxqyCGWGtAlIaUUpRoFU2VAWgWR0B48xqynk1edX2UKGgGaAloD0MI28GIfQIo+D+UhpRSlGgVTRsBaBZHQHj57VJ+UhV1fZQoaAZoCWgPQwjeyafHtthmQJSGlFKUaBVN3wFoFkdAeQaf7rLQonV9lChoBmgJaA9DCMwIbw/CWGdAlIaUUpRoFU2IAWgWR0B5ELA1vVEvdX2UKGgGaAloD0MI4lrtYS+sbECUhpRSlGgVTbYBaBZHQHkzpbt7a7F1fZQoaAZoCWgPQwgaFTjZBl4xwJSGlFKUaBVNYAFoFkdAeTxpOvdM03V9lChoBmgJaA9DCGQ7308NwGNAlIaUUpRoFU0sAmgWR0B5SoPOIInjdX2UKGgGaAloD0MIumsJ+aBsYUCUhpRSlGgVTTIDaBZHQHl6TQ/oq1B1fZQoaAZoCWgPQwjsGFdcHLtmQJSGlFKUaBVN9AFoFkdAeYmikfs/p3V9lChoBmgJaA9DCHCWkuUkj2RAlIaUUpRoFU1yAWgWR0B5k2UOd5IIdX2UKGgGaAloD0MIYtnMIalJN0CUhpRSlGgVS9loFkdAeZhH1OCXhXV9lChoBmgJaA9DCEPLun8sV3BAlIaUUpRoFU19AWgWR0B5ooGkep4sdX2UKGgGaAloD0MI12fO+tSdcECUhpRSlGgVTZwBaBZHQHms5UYKpkx1fZQoaAZoCWgPQwhEherm4gxUwJSGlFKUaBVNNQFoFkdAecs/oq0+knV9lChoBmgJaA9DCA98DFacPFfAlIaUUpRoFU0NAmgWR0B518CdSVGDdX2UKGgGaAloD0MIFf2hmSeGZkCUhpRSlGgVTbgBaBZHQHnkiCJ40Mx1fZQoaAZoCWgPQwjRIAVPIddJwJSGlFKUaBVL9mgWR0B56ief7JnydX2UKGgGaAloD0MIup7ounC1ZUCUhpRSlGgVTU4CaBZHQHn5SZ8a4tp1fZQoaAZoCWgPQwgCKbFre4MiwJSGlFKUaBVNfwFoFkdAehnJwbVBlnV9lChoBmgJaA9DCDKrd7gdckzAlIaUUpRoFU0kAWgWR0B6IQDDCP6sdX2UKGgGaAloD0MI5e/eUWM6SsCUhpRSlGgVTTgBaBZHQHoo1vAGjbl1fZQoaAZoCWgPQwg0aOif4FlvQJSGlFKUaBVNkwFoFkdAejMDM/yGz3V9lChoBmgJaA9DCFThz/DmLG9AlIaUUpRoFU2zAWgWR0B6PZxm03OwdX2UKGgGaAloD0MIsvFgi91WVMCUhpRSlGgVTfIBaBZHQHphasQumJp1fZQoaAZoCWgPQwgxem6hK6VCwJSGlFKUaBVNYwFoFkdAemohUipvP3V9lChoBmgJaA9DCHWOAdlr1mtAlIaUUpRoFU2oAWgWR0B6dVclgMMJdX2UKGgGaAloD0MIiCzSxLvCYUCUhpRSlGgVTbgBaBZHQHqCS+lCTll1fZQoaAZoCWgPQwgpBHKJI/1KwJSGlFKUaBVNYgFoFkdAeopWOp84P3V9lChoBmgJaA9DCMdJYd7jwm5AlIaUUpRoFU2ZAWgWR0B6rR2r4nF6dX2UKGgGaAloD0MI1qwzvq8aYkCUhpRSlGgVTXYCaBZHQHq/1nyup0h1fZQoaAZoCWgPQwhPdF34wQRuQJSGlFKUaBVNxgJoFkdAetXRNyo4uXV9lChoBmgJaA9DCKzGEtZGcmtAlIaUUpRoFU2nAWgWR0B64ijVQQ+VdX2UKGgGaAloD0MIdcqjG+FpYkCUhpRSlGgVTXUCaBZHQHsMahtcfNl1fZQoaAZoCWgPQwh2OLpKd8NgwJSGlFKUaBVNLwJoFkdAexwjk+5e7nV9lChoBmgJaA9DCHtP5bSnGGtAlIaUUpRoFU2kAWgWR0B7J9iMHbAUdX2UKGgGaAloD0MIrtaJy/F/WMCUhpRSlGgVTVwCaBZHQHtReGKyfL91fZQoaAZoCWgPQwj2CDVDKv9pQJSGlFKUaBVN1wFoFkdAe16NgBtDUnV9lChoBmgJaA9DCHGRe7q6Im9AlIaUUpRoFU2HAWgWR0B7aL7SApazdX2UKGgGaAloD0MIML39uehVb0CUhpRSlGgVTYQBaBZHQHtycm8dxQ11fZQoaAZoCWgPQwiWehaE8gRnQJSGlFKUaBVNtwFoFkdAe3+y1eBxxXV9lChoBmgJaA9DCOmayTfbhGVAlIaUUpRoFU3mAWgWR0B7pHtb9qDcdX2UKGgGaAloD0MImIbhI2KSbECUhpRSlGgVTY4CaBZHQHu1TdcjZ+R1fZQoaAZoCWgPQwiOyHcpNX1wQJSGlFKUaBVNaAFoFkdAe77Mbm2b5XV9lChoBmgJaA9DCMJNRpXhtm5AlIaUUpRoFU2JAWgWR0B7yThXKbKBdX2UKGgGaAloD0MI+s+aH39dTMCUhpRSlGgVTVEBaBZHQHvSGwV0tAd1fZQoaAZoCWgPQwiSrwRS4g9wQJSGlFKUaBVNWwFoFkdAe/IxMWXTmXV9lChoBmgJaA9DCJzB3y9m0WZAlIaUUpRoFU3hAWgWR0B7/ssPJ7swdX2UKGgGaAloD0MI2zAKgscObUCUhpRSlGgVTaQBaBZHQHwIdCAtnPF1fZQoaAZoCWgPQwiY3ZOHBbduQJSGlFKUaBVNYwFoFkdAfBFn+hoM8nV9lChoBmgJaA9DCK0Tl+MVBm5AlIaUUpRoFU17AWgWR0B8G1JBgNPQdX2UKGgGaAloD0MI+5RjsviNcECUhpRSlGgVTW8BaBZHQHw8EV32VVx1fZQoaAZoCWgPQwhQ/1nz40VVwJSGlFKUaBVNNgFoFkdAfENyY5T6znV9lChoBmgJaA9DCMmrcwzIcl3AlIaUUpRoFU2PAmgWR0B8U84YJmdzdX2UKGgGaAloD0MIyLYMOMtYaUCUhpRSlGgVTW8BaBZHQHxdlXeWOZN1fZQoaAZoCWgPQwh7EW3H1GRtQJSGlFKUaBVNaQFoFkdAfGYCuU2UCHV9lChoBmgJaA9DCBlybD3D329AlIaUUpRoFU1nAWgWR0B8h+PIXCTEdX2UKGgGaAloD0MIvFmD99VsbkCUhpRSlGgVTUgBaBZHQHyQYiPhhph1fZQoaAZoCWgPQwjN6bKY2HRDwJSGlFKUaBVLxmgWR0B8lMPBi1ArdX2UKGgGaAloD0MIvcPt0LAUQsCUhpRSlGgVS/loFkdAfJqJ7b+LnHV9lChoBmgJaA9DCFPqknGMkD7AlIaUUpRoFU0nAWgWR0B8oR+PRzBAdX2UKGgGaAloD0MIpoC0/4HzbECUhpRSlGgVTWQBaBZHQHyqjEBKcut1fZQoaAZoCWgPQwhg6Xx4lohKwJSGlFKUaBVNawFoFkdAfLMBeXzDoHV9lChoBmgJaA9DCLluSnmtkGlAlIaUUpRoFU1nAWgWR0B81FnvlU6xdX2UKGgGaAloD0MIBvGBHf8FD8CUhpRSlGgVS6xoFkdAfNf04iosI3V9lChoBmgJaA9DCG5sdqR6lmdAlIaUUpRoFU3YAWgWR0B85GsHSncddX2UKGgGaAloD0MIgVoMHqbHSMCUhpRSlGgVTQIBaBZHQHzqlxjriVB1fZQoaAZoCWgPQwiHMlTFVEJAwJSGlFKUaBVNZQFoFkdAfPNKtxMnJHV9lChoBmgJaA9DCIbJVMGoEEXAlIaUUpRoFU0PAWgWR0B8+bDUExIrdX2UKGgGaAloD0MIi8OZX00Ta0CUhpRSlGgVTYcBaBZHQH0bIgV45cV1fZQoaAZoCWgPQwgGS3UBL1lGwJSGlFKUaBVL82gWR0B9IPc580DVdX2UKGgGaAloD0MIlpS7z/HRbECUhpRSlGgVTcQBaBZHQH0sEhFEy+J1fZQoaAZoCWgPQwgbutkfqLRoQJSGlFKUaBVNdQFoFkdAfTYJJGvwE3V9lChoBmgJaA9DCHE9CtcjDWlAlIaUUpRoFU2KAWgWR0B9QPtdAxBWdX2UKGgGaAloD0MI5gXYRyczbkCUhpRSlGgVTaABaBZHQH1LoZAIIGB1fZQoaAZoCWgPQwgmjdE6qv5HwJSGlFKUaBVL32gWR0B9aBZFG5MDdX2UKGgGaAloD0MICyQofowFSMCUhpRSlGgVS/BoFkdAfW26ErXlKnV9lChoBmgJaA9DCLGnHf6aWVLAlIaUUpRoFU0pAWgWR0B9dMfdRBNVdX2UKGgGaAloD0MILEXylcDnbECUhpRSlGgVTY4BaBZHQH1/xsl9jPR1fZQoaAZoCWgPQwh3SDFAoi9CwJSGlFKUaBVNOwFoFkdAfYcyRB/qgXV9lChoBmgJaA9DCI1feCXJjGNAlIaUUpRoFU1MAmgWR0B9mC87IT4+dX2UKGgGaAloD0MIEVFM3gBuWMCUhpRSlGgVTUkBaBZHQH228gpz90l1fZQoaAZoCWgPQwhe9utOd2RFwJSGlFKUaBVNLwFoFkdAfb5U0elsQHV9lChoBmgJaA9DCM+/XfbrK1HAlIaUUpRoFUvfaBZHQH3DW5Yoy9F1fZQoaAZoCWgPQwg9C0J5H2lNwJSGlFKUaBVNkwFoFkdAfc3S3LFGX3V9lChoBmgJaA9DCMBeYcG9nXBAlIaUUpRoFU1pAWgWR0B91laV2Rq5dX2UKGgGaAloD0MI31LOF3ujR8CUhpRSlGgVTQ4BaBZHQH3cc2NvOyF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_lander_ppo_v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9e549b00a8184da4f7e46a0490c59807b03840f3b1bbb0f68a6daf97f41f5e9
|
3 |
+
size 146479
|
lunar_lander_ppo_v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
lunar_lander_ppo_v1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f590a0f5c20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f590a0f5cb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f590a0f5d40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f590a0f5dd0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f590a0f5e60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f590a0f5ef0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f590a0f5f80>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f590a0fa050>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f590a0fa0e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f590a0fa170>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f590a0fa200>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f590a0c3a20>"
|
20 |
+
},
|
21 |
+
"verbose": 0,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 1,
|
45 |
+
"num_timesteps": 200704,
|
46 |
+
"_total_timesteps": 200000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1663335142.815542,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACAcBz5w6ZY+Gs9JPaJQVr6noSk9TjkfPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIsqGb/QFIZ0CUhpRSlIwBbJRNPQKMAXSUR0B4EjY9Pk7wdX2UKGgGaAloD0MIEEBqE6eOa0CUhpRSlGgVTWwBaBZHQHga/3vhIe51fZQoaAZoCWgPQwg/OnXls6hlwJSGlFKUaBVNogFoFkdAeDytjCpFTnV9lChoBmgJaA9DCPjii/Z4oUfAlIaUUpRoFUvoaBZHQHhB6V+qioN1fZQoaAZoCWgPQwibN04Kc8JoQJSGlFKUaBVNXQFoFkdAeEozGgi/wnV9lChoBmgJaA9DCCmXxi88d2xAlIaUUpRoFU2/AWgWR0B4Via/h2nsdX2UKGgGaAloD0MIRNsxdVcFakCUhpRSlGgVTZIBaBZHQHhgw7Pppvh1fZQoaAZoCWgPQwiEvB5MiqxqQJSGlFKUaBVNagFoFkdAeIn2MsH0LHV9lChoBmgJaA9DCMNHxJRIkWdAlIaUUpRoFU2yAWgWR0B4m5LSNOuadX2UKGgGaAloD0MIrU1je60Za0CUhpRSlGgVTQUCaBZHQHiuF1r6+Fl1fZQoaAZoCWgPQwhHHogs0pgywJSGlFKUaBVNPAFoFkdAeLWbtZ3cHnV9lChoBmgJaA9DCJ6ymq4nrknAlIaUUpRoFU2cAWgWR0B4wJOzposadX2UKGgGaAloD0MIEEBqEydfMsCUhpRSlGgVTTABaBZHQHjetNFjNIN1fZQoaAZoCWgPQwgjTbwDvAloQJSGlFKUaBVNcAFoFkdAeOd4ubqhUXV9lChoBmgJaA9DCDJxqyCGWGtAlIaUUpRoFU2VAWgWR0B48xqynk1edX2UKGgGaAloD0MI28GIfQIo+D+UhpRSlGgVTRsBaBZHQHj57VJ+UhV1fZQoaAZoCWgPQwjeyafHtthmQJSGlFKUaBVN3wFoFkdAeQaf7rLQonV9lChoBmgJaA9DCMwIbw/CWGdAlIaUUpRoFU2IAWgWR0B5ELA1vVEvdX2UKGgGaAloD0MI4lrtYS+sbECUhpRSlGgVTbYBaBZHQHkzpbt7a7F1fZQoaAZoCWgPQwgaFTjZBl4xwJSGlFKUaBVNYAFoFkdAeTxpOvdM03V9lChoBmgJaA9DCGQ7308NwGNAlIaUUpRoFU0sAmgWR0B5SoPOIInjdX2UKGgGaAloD0MIumsJ+aBsYUCUhpRSlGgVTTIDaBZHQHl6TQ/oq1B1fZQoaAZoCWgPQwjsGFdcHLtmQJSGlFKUaBVN9AFoFkdAeYmikfs/p3V9lChoBmgJaA9DCHCWkuUkj2RAlIaUUpRoFU1yAWgWR0B5k2UOd5IIdX2UKGgGaAloD0MIYtnMIalJN0CUhpRSlGgVS9loFkdAeZhH1OCXhXV9lChoBmgJaA9DCEPLun8sV3BAlIaUUpRoFU19AWgWR0B5ooGkep4sdX2UKGgGaAloD0MI12fO+tSdcECUhpRSlGgVTZwBaBZHQHms5UYKpkx1fZQoaAZoCWgPQwhEherm4gxUwJSGlFKUaBVNNQFoFkdAecs/oq0+knV9lChoBmgJaA9DCA98DFacPFfAlIaUUpRoFU0NAmgWR0B518CdSVGDdX2UKGgGaAloD0MIFf2hmSeGZkCUhpRSlGgVTbgBaBZHQHnkiCJ40Mx1fZQoaAZoCWgPQwjRIAVPIddJwJSGlFKUaBVL9mgWR0B56ief7JnydX2UKGgGaAloD0MIup7ounC1ZUCUhpRSlGgVTU4CaBZHQHn5SZ8a4tp1fZQoaAZoCWgPQwgCKbFre4MiwJSGlFKUaBVNfwFoFkdAehnJwbVBlnV9lChoBmgJaA9DCDKrd7gdckzAlIaUUpRoFU0kAWgWR0B6IQDDCP6sdX2UKGgGaAloD0MI5e/eUWM6SsCUhpRSlGgVTTgBaBZHQHoo1vAGjbl1fZQoaAZoCWgPQwg0aOif4FlvQJSGlFKUaBVNkwFoFkdAejMDM/yGz3V9lChoBmgJaA9DCFThz/DmLG9AlIaUUpRoFU2zAWgWR0B6PZxm03OwdX2UKGgGaAloD0MIsvFgi91WVMCUhpRSlGgVTfIBaBZHQHphasQumJp1fZQoaAZoCWgPQwgxem6hK6VCwJSGlFKUaBVNYwFoFkdAemohUipvP3V9lChoBmgJaA9DCHWOAdlr1mtAlIaUUpRoFU2oAWgWR0B6dVclgMMJdX2UKGgGaAloD0MIiCzSxLvCYUCUhpRSlGgVTbgBaBZHQHqCS+lCTll1fZQoaAZoCWgPQwgpBHKJI/1KwJSGlFKUaBVNYgFoFkdAeopWOp84P3V9lChoBmgJaA9DCMdJYd7jwm5AlIaUUpRoFU2ZAWgWR0B6rR2r4nF6dX2UKGgGaAloD0MI1qwzvq8aYkCUhpRSlGgVTXYCaBZHQHq/1nyup0h1fZQoaAZoCWgPQwhPdF34wQRuQJSGlFKUaBVNxgJoFkdAetXRNyo4uXV9lChoBmgJaA9DCKzGEtZGcmtAlIaUUpRoFU2nAWgWR0B64ijVQQ+VdX2UKGgGaAloD0MIdcqjG+FpYkCUhpRSlGgVTXUCaBZHQHsMahtcfNl1fZQoaAZoCWgPQwh2OLpKd8NgwJSGlFKUaBVNLwJoFkdAexwjk+5e7nV9lChoBmgJaA9DCHtP5bSnGGtAlIaUUpRoFU2kAWgWR0B7J9iMHbAUdX2UKGgGaAloD0MIrtaJy/F/WMCUhpRSlGgVTVwCaBZHQHtReGKyfL91fZQoaAZoCWgPQwj2CDVDKv9pQJSGlFKUaBVN1wFoFkdAe16NgBtDUnV9lChoBmgJaA9DCHGRe7q6Im9AlIaUUpRoFU2HAWgWR0B7aL7SApazdX2UKGgGaAloD0MIML39uehVb0CUhpRSlGgVTYQBaBZHQHtycm8dxQ11fZQoaAZoCWgPQwiWehaE8gRnQJSGlFKUaBVNtwFoFkdAe3+y1eBxxXV9lChoBmgJaA9DCOmayTfbhGVAlIaUUpRoFU3mAWgWR0B7pHtb9qDcdX2UKGgGaAloD0MImIbhI2KSbECUhpRSlGgVTY4CaBZHQHu1TdcjZ+R1fZQoaAZoCWgPQwiOyHcpNX1wQJSGlFKUaBVNaAFoFkdAe77Mbm2b5XV9lChoBmgJaA9DCMJNRpXhtm5AlIaUUpRoFU2JAWgWR0B7yThXKbKBdX2UKGgGaAloD0MI+s+aH39dTMCUhpRSlGgVTVEBaBZHQHvSGwV0tAd1fZQoaAZoCWgPQwiSrwRS4g9wQJSGlFKUaBVNWwFoFkdAe/IxMWXTmXV9lChoBmgJaA9DCJzB3y9m0WZAlIaUUpRoFU3hAWgWR0B7/ssPJ7swdX2UKGgGaAloD0MI2zAKgscObUCUhpRSlGgVTaQBaBZHQHwIdCAtnPF1fZQoaAZoCWgPQwiY3ZOHBbduQJSGlFKUaBVNYwFoFkdAfBFn+hoM8nV9lChoBmgJaA9DCK0Tl+MVBm5AlIaUUpRoFU17AWgWR0B8G1JBgNPQdX2UKGgGaAloD0MI+5RjsviNcECUhpRSlGgVTW8BaBZHQHw8EV32VVx1fZQoaAZoCWgPQwhQ/1nz40VVwJSGlFKUaBVNNgFoFkdAfENyY5T6znV9lChoBmgJaA9DCMmrcwzIcl3AlIaUUpRoFU2PAmgWR0B8U84YJmdzdX2UKGgGaAloD0MIyLYMOMtYaUCUhpRSlGgVTW8BaBZHQHxdlXeWOZN1fZQoaAZoCWgPQwh7EW3H1GRtQJSGlFKUaBVNaQFoFkdAfGYCuU2UCHV9lChoBmgJaA9DCBlybD3D329AlIaUUpRoFU1nAWgWR0B8h+PIXCTEdX2UKGgGaAloD0MIvFmD99VsbkCUhpRSlGgVTUgBaBZHQHyQYiPhhph1fZQoaAZoCWgPQwjN6bKY2HRDwJSGlFKUaBVLxmgWR0B8lMPBi1ArdX2UKGgGaAloD0MIvcPt0LAUQsCUhpRSlGgVS/loFkdAfJqJ7b+LnHV9lChoBmgJaA9DCFPqknGMkD7AlIaUUpRoFU0nAWgWR0B8oR+PRzBAdX2UKGgGaAloD0MIpoC0/4HzbECUhpRSlGgVTWQBaBZHQHyqjEBKcut1fZQoaAZoCWgPQwhg6Xx4lohKwJSGlFKUaBVNawFoFkdAfLMBeXzDoHV9lChoBmgJaA9DCLluSnmtkGlAlIaUUpRoFU1nAWgWR0B81FnvlU6xdX2UKGgGaAloD0MIBvGBHf8FD8CUhpRSlGgVS6xoFkdAfNf04iosI3V9lChoBmgJaA9DCG5sdqR6lmdAlIaUUpRoFU3YAWgWR0B85GsHSncddX2UKGgGaAloD0MIgVoMHqbHSMCUhpRSlGgVTQIBaBZHQHzqlxjriVB1fZQoaAZoCWgPQwiHMlTFVEJAwJSGlFKUaBVNZQFoFkdAfPNKtxMnJHV9lChoBmgJaA9DCIbJVMGoEEXAlIaUUpRoFU0PAWgWR0B8+bDUExIrdX2UKGgGaAloD0MIi8OZX00Ta0CUhpRSlGgVTYcBaBZHQH0bIgV45cV1fZQoaAZoCWgPQwgGS3UBL1lGwJSGlFKUaBVL82gWR0B9IPc580DVdX2UKGgGaAloD0MIlpS7z/HRbECUhpRSlGgVTcQBaBZHQH0sEhFEy+J1fZQoaAZoCWgPQwgbutkfqLRoQJSGlFKUaBVNdQFoFkdAfTYJJGvwE3V9lChoBmgJaA9DCHE9CtcjDWlAlIaUUpRoFU2KAWgWR0B9QPtdAxBWdX2UKGgGaAloD0MI5gXYRyczbkCUhpRSlGgVTaABaBZHQH1LoZAIIGB1fZQoaAZoCWgPQwgmjdE6qv5HwJSGlFKUaBVL32gWR0B9aBZFG5MDdX2UKGgGaAloD0MICyQofowFSMCUhpRSlGgVS/BoFkdAfW26ErXlKnV9lChoBmgJaA9DCLGnHf6aWVLAlIaUUpRoFU0pAWgWR0B9dMfdRBNVdX2UKGgGaAloD0MILEXylcDnbECUhpRSlGgVTY4BaBZHQH1/xsl9jPR1fZQoaAZoCWgPQwh3SDFAoi9CwJSGlFKUaBVNOwFoFkdAfYcyRB/qgXV9lChoBmgJaA9DCI1feCXJjGNAlIaUUpRoFU1MAmgWR0B9mC87IT4+dX2UKGgGaAloD0MIEVFM3gBuWMCUhpRSlGgVTUkBaBZHQH228gpz90l1fZQoaAZoCWgPQwhe9utOd2RFwJSGlFKUaBVNLwFoFkdAfb5U0elsQHV9lChoBmgJaA9DCM+/XfbrK1HAlIaUUpRoFUvfaBZHQH3DW5Yoy9F1fZQoaAZoCWgPQwg9C0J5H2lNwJSGlFKUaBVNkwFoFkdAfc3S3LFGX3V9lChoBmgJaA9DCMBeYcG9nXBAlIaUUpRoFU1pAWgWR0B91laV2Rq5dX2UKGgGaAloD0MI31LOF3ujR8CUhpRSlGgVTQ4BaBZHQH3cc2NvOyF1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 980,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
lunar_lander_ppo_v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82c8a16be87b0c61a9ab97d4c204b5a18d5b17298cdfcf9e70e34361fff50a74
|
3 |
+
size 87865
|
lunar_lander_ppo_v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50e87d6b5184425e62566860b62d992041c4b539cafe5ead44b627491f946b44
|
3 |
+
size 43201
|
lunar_lander_ppo_v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_ppo_v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (264 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 57.59353219053999, "std_reward": 157.5779266226401, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-16T13:57:55.373832"}
|