johannhartmann commited on
Commit
f372c61
·
verified ·
1 Parent(s): f2c9a13

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +137 -0
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ - fr
6
+ pipeline_tag: text-generation
7
+ ---
8
+
9
+ ![image/png](https://huggingface.co/datasets/malteos/images/resolve/main/occiglot.medium.png)
10
+
11
+ # Occiglot-7B-FR-EN-Instruct
12
+
13
+ > A [polyglot](https://en.wikipedia.org/wiki/Multilingualism#In_individuals) language model for the [Occident](https://en.wikipedia.org/wiki/Occident).
14
+ >
15
+
16
+ **Occiglot-7B-FR-EN-Instruct** is a the instruct version of [occiglot-7b-fr-en](https://huggingface.co/occiglot/occiglot-7b-fr-en), a generative language model with 7B parameters supporting the Spanish and English and trained by the [Occiglot Research Collective](https://occiglot.github.io/occiglot/).
17
+ It was trained on 160M tokens of additional multilingual and code instructions.
18
+ Note that the model was not safety aligned and might generate problematic outputs.
19
+
20
+ This is the first release of an ongoing open research project for multilingual language models.
21
+ If you want to train a model for your own language or are working on evaluations, please contact us or join our [Discord server](https://discord.gg/wUpvYs4XvM). **We are open for collaborations!**
22
+
23
+
24
+ ### Model details
25
+
26
+ - **Instruction tuned from:** [occiglot-7b-fr-en](https://huggingface.co/occiglot/occiglot-7b-fr-en)
27
+ - **Model type:** Causal decoder-only transformer language model
28
+ - **Languages:** English, Spanish, and code.
29
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
30
+ - **Compute resources:** [DFKI cluster](https://www.dfki.de/en/web)
31
+ - **Contributors:** Manuel Brack, Patrick Schramowski, Pedro Ortiz, Malte Ostendorff, Fabio Barth, Georg Rehm, Kristian Kersting
32
+ - **Research labs:** [Occiglot](https://occiglot.github.io/occiglot/) with support from [SAINT](https://www.dfki.de/en/web/research/research-departments/foundations-of-systems-ai) and [SLT](https://www.dfki.de/en/web/research/research-departments/speech-and-language-technology)
33
+ - **Contact:** [Discord](https://discord.gg/wUpvYs4XvM)
34
+
35
+ ### How to use
36
+
37
+ The model was trained using the chatml instruction template. You can use the transformers chat template feature for interaction.
38
+ Since the generation relies on some randomness, we
39
+ set a seed for reproducibility:
40
+
41
+ ```python
42
+ >>> from transformers import AutoTokenizer, MistralForCausalLM, set_seed
43
+ >>> tokenizer = AutoTokenizer.from_pretrained("occiglot/occiglot-7b-es-en-instruct")
44
+ >>> model = MistralForCausalLM.from_pretrained('occiglot/occiglot-7b-es-en-instruct') # You may want to use bfloat16 and/or move to GPU here
45
+ >>> set_seed(42)
46
+ >>> messages = [
47
+ >>> {"role": "system", 'content': 'You are a helpful assistant. Please give short and concise answers.'},
48
+ >>> {"role": "user", "content": "qui est le président français ?"},
49
+ >>> ]
50
+ >>> tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=False, return_tensors='pt',)
51
+ >>> set_seed(42)
52
+ >>> outputs = model.generate(tokenized_chat.to('cuda'), max_new_tokens=200,)
53
+ >>> tokenizer.decode(out[0][len(tokenized_chat[0]):])
54
+ 'Le président français est Emmanuel Macron.'
55
+ ```
56
+
57
+ ## Dataset
58
+
59
+ The training data was split evenly amongst French and English based on the total number of tokens.
60
+
61
+ **English and Code**
62
+ - [Open-Hermes-2B](https://huggingface.co/datasets/teknium/OpenHermes-2.5)
63
+
64
+
65
+ **French**
66
+ - [Bactrian-X](https://huggingface.co/datasets/MBZUAI/Bactrian-X) (French subset)
67
+ - [AI-Society Translated](https://huggingface.co/datasets/camel-ai/ai_society_translated) (French subset)
68
+ - [GT-Dorimiti](https://huggingface.co/datasets/Gt-Doremiti/gt-doremiti-instructions)
69
+ - [OASST-2](https://huggingface.co/datasets/OpenAssistant/oasst2) (French subset)
70
+ - [Aya-Dataset](https://huggingface.co/datasets/CohereForAI/aya_dataset) (French subset)
71
+
72
+ ## Training settings
73
+
74
+ - Full instruction fine-tuning on 8xH100.
75
+ - 0.6 - 4 training epochs (depending on dataset sampling).
76
+ - Framework: [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
77
+ - Precision: bf16
78
+ - Optimizer: AdamW
79
+ - Global batch size: 128 (with 8192 context length)
80
+ - Cosine Annealing with Warmup
81
+
82
+
83
+ ## Tokenizer
84
+
85
+ Tokenizer is unchanged from [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
86
+
87
+ ## Evaluation
88
+
89
+ Preliminary evaluation results can be found below.
90
+ Please note that the non-English results are based on partially machine-translated datasets and English prompts ([Belebele](https://huggingface.co/datasets/facebook/belebele) and [Okapi framework](https://github.com/nlp-uoregon/Okapi)) and thus should be interpreted with caution, e.g., biased towards English model performance.
91
+ Currently, we are working on more suitable benchmarks for Spanish, French, German, and Italian.
92
+
93
+ <details>
94
+ <summary>Evaluation results</summary>
95
+
96
+
97
+ ### English
98
+
99
+ | | arc_challenge | belebele | hellaswag | mmlu | truthfulqa | avg |
100
+ |:-------------------------------------|----------------:|-----------:|------------:|---------:|-------------:|---------:|
101
+ | occiglot/occiglot-7b-eu5 | 0.530717 | 0.726667 | 0.789882 | 0.531904 | 0.403678 | 0.59657 |
102
+ | occiglot/occiglot-7b-eu5-instruct | 0.558874 | 0.746667 | 0.799841 | 0.535109 | 0.449034 | 0.617905 |
103
+ | occiglot/occiglot-7b-de-en | 0.556314 | 0.791111 | 0.803824 | 0.568438 | 0.423251 | 0.628587 |
104
+ | occiglot/occiglot-7b-de-en-instruct | 0.604096 | 0.812222 | 0.80004 | 0.570574 | 0.493807 | 0.656148 |
105
+ | LeoLM/leo-mistral-hessianai-7b | 0.522184 | 0.736667 | 0.777833 | 0.538812 | 0.429248 | 0.600949 |
106
+ | mistralai/Mistral-7B-v0.1 | 0.612628 | 0.844444 | 0.834097 | 0.624555 | 0.426201 | 0.668385 |
107
+ | mistralai/Mistral-7B-Instruct-v0.2 | 0.637372 | 0.824444 | 0.846345 | 0.59201 | 0.668116 | 0.713657 |
108
+
109
+ ### French
110
+
111
+ | | arc_challenge_fr | belebele_fr | hellaswag_fr | mmlu_fr | truthfulqa_fr | avg |
112
+ |:-------------------------------------|-------------------:|--------------:|---------------:|----------:|----------------:|---------:|
113
+ | occiglot/occiglot-7b-eu5 | 0.506416 | 0.675556 | 0.712358 | 0.495684 | 0.23507 | 0.525017 |
114
+ | occiglot/occiglot-7b-eu5-instruct | 0.541488 | 0.7 | 0.724245 | 0.499122 | 0.306226 | 0.554216 |
115
+ | occiglot/occiglot-7b-fr-en | 0.532934 | 0.706667 | 0.718891 | 0.51333 | 0.242694 | 0.542903 |
116
+ | occiglot/occiglot-7b-fr-en-instruct | 0.542344 | 0.752222 | 0.72553 | 0.52051 | 0.29479 | 0.567079 |
117
+ | OpenLLM-France/Claire-Mistral-7B-0.1 | 0.486741 | 0.694444 | 0.642964 | 0.479566 | 0.271919 | 0.515127 |
118
+ | mistralai/Mistral-7B-v0.1 | 0.525235 | 0.776667 | 0.66481 | 0.543121 | 0.280813 | 0.558129 |
119
+ | mistralai/Mistral-7B-Instruct-v0.2 | 0.551754 | 0.758889 | 0.67916 | 0.506837 | 0.382465 | 0.575821 |
120
+
121
+ </details>
122
+
123
+ ## Acknowledgements
124
+
125
+ The pre-trained model training was supported by a compute grant at the [42 supercomputer](https://hessian.ai/) which is a central component in the development of [hessian AI](https://hessian.ai/), the [AI Innovation Lab](https://hessian.ai/infrastructure/ai-innovationlab/) (funded by the [Hessian Ministry of Higher Education, Research and the Art (HMWK)](https://wissenschaft.hessen.de) & the [Hessian Ministry of the Interior, for Security and Homeland Security (HMinD)](https://innen.hessen.de)) and the [AI Service Centers](https://hessian.ai/infrastructure/ai-service-centre/) (funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)).
126
+ The curation of the training data is partially funded by the [German Federal Ministry for Economic Affairs and Climate Action (BMWK)](https://www.bmwk.de/Navigation/EN/Home/home.html)
127
+ through the project [OpenGPT-X](https://opengpt-x.de/en/) (project no. 68GX21007D).
128
+
129
+
130
+ ## License
131
+
132
+ [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0.html)
133
+
134
+ ## See also
135
+
136
+ - https://huggingface.co/collections/occiglot/occiglot-eu5-7b-v01-65dbed502a6348b052695e01
137
+ - https://huggingface.co/NikolayKozloff/occiglot-7b-fr-en-GGUF