Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +19 -19
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 264.78 +/- 22.89
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce6cad1bd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce6cad1c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce6cad1cf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce6cad1d80>", "_build": "<function ActorCriticPolicy._build at 0x7fce6cad1e10>", "forward": "<function ActorCriticPolicy.forward at 0x7fce6cad1ea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fce6cad1f30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce6cad1fc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fce6cad2050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce6cad20e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce6cad2170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce6cad2200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcdfa13a4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 906064, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686974005736525370, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqYqDya0Y4+bukKvRbILL70Zhw9hYsOvQAAAAAAAAAA5oc3vo7ZMz/y3O494fR1vv6mdLw+2sk8AAAAAAAAAAD6CSe+yI/SPaHmCj3e/Fu+v+ByvYrFsj0AAAAAAAAAAGZCIT6/920/hswtPpeSor6OhCo+XSK0vQAAAAAAAAAA5l4pvdTh5D3Rjow9UyVJvrRkTzwAGpg8AAAAAAAAAACNjdK91BMMPvAPtT1Rb2C+nwVBPXpKGj4AAAAAAAAAAOb5Kb7dhRk/43CrvIrxfb7bG0y9erqovAAAAAAAAAAAIHkZvlSr5j2x6RQ+lXoOvi0B+Lv6amU8AAAAAAAAAACa2Gy9hUHBu5LhiLumCLA8bNwhPSqWk70AAIA/AACAP4Dg3j22ZYs/hzEvPpNi3r7UjwA+ZnZTPAAAAAAAAAAA9q5WvkHMYT8Fie48xE9Tvlg1ir1GmvQ9AAAAAAAAAADARIA9VygnPnsKob3tcC6+2ErEvHoDar0AAAAAAAAAAJqMlz3vDxU/wUelvUlegr6WgLm7skQQvQAAAAAAAAAAM99dvT27WD445lW9NrosvlDZHL1OCFq9AAAAAAAAAAAzuz87BTbIu2OS+DtLfYI8dBEWPd7JXb0AAIA/AACAP828YDsRnjo+DFaHPMzdc771uTg85jYsPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.09887999999999997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4bR3V09yOMAWyUTVUBjAF0lEdAkMFCGSIP9XV9lChoBkdAR1Efq5byH2gHTRIBaAhHQJDD9MlC1JF1fZQoaAZHQG7CoxHoX9BoB01pAWgIR0CQxADOkcjrdX2UKGgGR0BolNugpSaWaAdNDANoCEdAkMVPboKUmnV9lChoBkdAcZF+mm+Cb2gHTcABaAhHQJDFzt4RmK91fZQoaAZHQG42hhpg1FZoB01gAWgIR0CQxfnscABDdX2UKGgGR0BvkqR+z+m4aAdNPAFoCEdAkMbXB55Z83V9lChoBkdAbx56zE74jGgHTT4BaAhHQJDHwCA+Y+l1fZQoaAZHQHB+PlQuVX5oB009AWgIR0CQyeZAIIGAdX2UKGgGR0BwZehSLqD9aAdNXAFoCEdAkMrU7r9l3HV9lChoBkdAbEynZ00WM2gHTVgBaAhHQJDK7SmZVn51fZQoaAZHQHA4k+gUUPBoB00vAWgIR0CQy1AuZkTYdX2UKGgGR0AT/8xbjcVQaAdNBgFoCEdAkMvKgVXV9XV9lChoBkdAbcnbRF7UomgHTWQBaAhHQJDMFA6dUbV1fZQoaAZHQHKOeVTrE+BoB01ZAWgIR0CQzcgTRIBjdX2UKGgGR0BuYcAmzBykaAdNvgFoCEdAkM7gTRIBinV9lChoBkdAbkL3Qla8pWgHTTQBaAhHQJDQP114gRt1fZQoaAZHQG7xXjMmnfloB003AWgIR0CQ0FZnL7oCdX2UKGgGR0BwczFUADJVaAdNqwFoCEdAkNIHHeaa1HV9lChoBkdARVODJ2dNFmgHTQ0BaAhHQJDSc7q6e5F1fZQoaAZHQHHKGG7BfrtoB00yAWgIR0CQ0vLNfPX1dX2UKGgGR0BvcggieNDMaAdNWQFoCEdAkNOUOuq3mXV9lChoBkdAcja6qbSZ0GgHTW8BaAhHQJDTy2gFotd1fZQoaAZHQHCWOZLIxQBoB01+AWgIR0CQ1MUJv5xjdX2UKGgGR0BIFSRSxZ+yaAdL82gIR0CQ10V/tpmFdX2UKGgGR0BuZm+7Dl5oaAdNUwFoCEdAkNfoGpuMuXV9lChoBkdAbVyocaOxS2gHTU4BaAhHQJDYMZ3s5XF1fZQoaAZHQG8k/FzdUKloB01cAWgIR0CQ2FrAxi5NdX2UKGgGR0BxasTIvJzUaAdNYAFoCEdAkNleBQN1AHV9lChoBkdAbtwOKfnOjmgHTX8BaAhHQJDa2JHiFTN1fZQoaAZHQHFbHVCojwBoB01TAWgIR0CQ3BJyQxN7dX2UKGgGR0A83GfwqiGnaAdNCAFoCEdAkNyjIJZ4fXV9lChoBkdAQ1T/jsD4g2gHS/doCEdAkN0fhIe5nXV9lChoBkdAb2GE+xGDtmgHTVUBaAhHQJDdjhIe5nV1fZQoaAZHQG56c/UvwmVoB01bAWgIR0CQ3bHWBjFydX2UKGgGR0BwakNd7fHhaAdNPQFoCEdAkN8Tkp7TlXV9lChoBkdAcJNYtg8bJmgHTWEBaAhHQJDhYk7fYSR1fZQoaAZHQGy0YD1XeWRoB02gAWgIR0CQ4iB4Uvf1dX2UKGgGR0BwC3whGH58aAdNeQFoCEdAkPRjKYAsCnV9lChoBkdAbAkfnOjZc2gHTUMBaAhHQJD02PmxMWZ1fZQoaAZHQHFdHVsk6cRoB02gAmgIR0CQ9QJiy6czdX2UKGgGR0Bx8yyE+PilaAdNUwFoCEdAkPaPgeii7HV9lChoBkdAcGvHN5dGAmgHTVsBaAhHQJD2uyv9tMx1fZQoaAZHQHGiBJmNBGBoB01bAWgIR0CQ9+m6XjU/dX2UKGgGR0BwuwbJfYz0aAdNhwFoCEdAkPgl/6O5rnV9lChoBkdATFssOG0u2GgHTSIBaAhHQJD5beUILPV1fZQoaAZHQG7lQEhaC+VoB00YAWgIR0CQ+Z/zreImdX2UKGgGR0Bw+u9/SYw7aAdNYQFoCEdAkPmsDSw4bXV9lChoBkdAa0XcD8tPHmgHTVcBaAhHQJD6YnTiKix1fZQoaAZHQHFCzxG2CuloB02AAWgIR0CQ/Un6l+EzdX2UKGgGR0BwAwunMt9QaAdNsQFoCEdAkP5j1K5CnnV9lChoBkdAbsMCSzPa+WgHTUUBaAhHQJD/z1RLsa91fZQoaAZHQHGwwIIF/x5oB00gAWgIR0CRAFZPEbYLdX2UKGgGR0BtENMj/uLKaAdNPAFoCEdAkQFr2g398HV9lChoBkdAcSIoH9m6G2gHTU4BaAhHQJEBu508vEl1fZQoaAZHQGsM8EV32VVoB01kAWgIR0CRBWyhzvJBdX2UKGgGR0ByMXC3w1BMaAdNEQJoCEdAkQYBm5DqnnV9lChoBkdAO6eqioKlYWgHTSsBaAhHQJEGoKw6hg51fZQoaAZHQG2WYNZvDP5oB01TAWgIR0CRBq/lQuVYdX2UKGgGR0BxpRNQCSzPaAdNOAFoCEdAkQb4oNNJv3V9lChoBkdAbGiYa5wwTWgHTTgBaAhHQJEHMYaYNRZ1fZQoaAZHQGzToA4n4PBoB01uAWgIR0CRB52SdOIqdX2UKGgGR0Bv85SUC7sfaAdNoQFoCEdAkQhm6kIomXV9lChoBkdAa8NiExqO92gHTVYBaAhHQJEJNKdxyXF1fZQoaAZHQDSsDuBtk4FoB0v9aAhHQJEJtNnGsFN1fZQoaAZHQHFgp+6RQrNoB01bAmgIR0CRCyX5FgDzdX2UKGgGR0Bt6S0Sh8IBaAdNSAFoCEdAkQtyAxzq8nV9lChoBkdAbitxIatLc2gHTVsBaAhHQJEOhvm5lOJ1fZQoaAZHQG11BYeT3ZhoB01AAWgIR0CRD0bDdgv2dX2UKGgGR0BvEbNUwSJ1aAdNaAFoCEdAkRDuYplSTHV9lChoBkdAbzo7sfJV82gHTU0BaAhHQJET4L0Bfa91fZQoaAZHQHD+5oTPBzpoB01KAWgIR0CRFQ6XSjQBdX2UKGgGR0BxDN4QjD8+aAdNUQFoCEdAkRVf4dp7C3V9lChoBkdAbDpgmZ3LWGgHTSEBaAhHQJEWMolUp/h1fZQoaAZHQGny4s/Y8MdoB01cAWgIR0CRFk31BdD6dX2UKGgGR0BwOpCx/ustaAdNUAFoCEdAkRZyk0rK/3V9lChoBkdAcCtnkDIRy2gHTVsBaAhHQJEWfsKLKmt1fZQoaAZHQGuqRMWXTmZoB014AWgIR0CRFrG6f8MvdX2UKGgGR0AvLwDvE0iyaAdL/WgIR0CRFv7j1f3OdX2UKGgGR0BwiG5hBqsVaAdNVAFoCEdAkRdP3rUsnXV9lChoBkdAbXbd9Dx9X2gHTQsCaAhHQJEXrMINVip1fZQoaAZHQHHcEYj0L+hoB01yAWgIR0CRGVVBD5TIdX2UKGgGR0BxTI078vVWaAdNcwFoCEdAkRsGDg62fHV9lChoBkdAb7+IHC4z8GgHTWEBaAhHQJEdVid8Rcx1fZQoaAZHQHEeTNt65XloB01FAWgIR0CRL2qFAVwhdX2UKGgGR0BxIgnpjc2zaAdNcAFoCEdAkS/bzXjEN3V9lChoBkdAcK/wiJO32GgHTUsBaAhHQJEyO2BreqJ1fZQoaAZHQHDH7DMvAXVoB004AWgIR0CRMp4c3l0YdX2UKGgGR0BweFSDRMN+aAdNIAFoCEdAkTLCvs7dSHV9lChoBkdAbyw5BC2MKmgHTVYBaAhHQJEztNrTH811fZQoaAZHQHAUAyM1jy5oB00ZAWgIR0CRM8vtMPBjdX2UKGgGR0Bv4nrOZ9eAaAdNQgFoCEdAkTPiI1tO23V9lChoBkdAb+IEW69TP2gHTTkBaAhHQJE0NGAkLQZ1fZQoaAZHQHEb/TPSlWRoB01iAWgIR0CRNPynk1dgdX2UKGgGR0Bwd/b0voNeaAdNZwFoCEdAkTVWyLQ5WHV9lChoBkdAb4ZpCa7Va2gHTW4BaAhHQJE2cdFOO811fZQoaAZHQGxXGgi/wiJoB02NAWgIR0CRNrP2PDHfdX2UKGgGR0BxJCZ/kNnXaAdNWQFoCEdAkTf0FW4mTnV9lChoBkdAbDn/EOy3TmgHTUgBaAhHQJE5FktmL+B1fZQoaAZHQHGBSYG+sYFoB00cAWgIR0CROaMn7YTTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 220, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbe0ed9f30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbe0ed9fc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbe0eda050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbe0eda0e0>", "_build": "<function ActorCriticPolicy._build at 0x7fdbe0eda170>", "forward": "<function ActorCriticPolicy.forward at 0x7fdbe0eda200>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdbe0eda290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbe0eda320>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdbe0eda3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbe0eda440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbe0eda4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbe0eda560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdbe0ed6240>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686975943614210081, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2ilL22YRc9bwzIvVA8Nr00txm+omb1PQAAAAAAAAAApqeVvSv5vj1zQ4U+pSs/vrpsGbzQ++c3AAAAAAAAAAArNZm+D0BSPyqmHb6Z/QC//8p5viCnebsAAAAAAAAAAJpfkLwphCy6GtV/uyLfdrdASTO7rg4QOgAAgD8AAIA/Gtb2vf1aWT/6J1S+xYrhvltPD7441X09AAAAAAAAAACNrDg+w1ZpvHQgCjuZ4CC5UUnOvbBLMLoAAIA/AACAP82YPjxI37I/dEGTPvL5Qb5bST+8tFYIvQAAAAAAAAAApmqzPYndaj5ieqI9lrSBvoy0CDwY9728AAAAAAAAAAAAgE47Qz1rPY7rFrx/DCS+HCA1vVGJuLwAAAAAAAAAAFYVdb4u4ZA+clmvPufvZL6jnUa9CvS8PQAAAAAAAAAAmt+/vMWq3zz37CQ+dOjFvdSA1rtjrRQ9AAAAAAAAAAAzqZE86tqtP4NH5z3XA66+WvevO1ov0T0AAAAAAAAAADPp+7wxFII9+l62vY4fUb6OGOy9SJSQvQAAAAAAAAAA5j3cPQGSSj62o1++yHqCvjK7gL0KH0Y9AAAAAAAAAAB2Kpo+1v6JP3whuD7yyhO/sG0HPxbxMz4AAAAAAAAAABP6eT7Spxg/V1Mrvo0myr6vYJ09myv0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG99lefI0ZaMAWyUS/uMAXSUR0CQjvvrWy1NdX2UKGgGR0Bx5BPLxI8RaAdNCAFoCEdAkI8Lwz+FUXV9lChoBkdAcVNSGrS3LGgHTVUBaAhHQJCPNG+bmU51fZQoaAZHQHH5QIY3vQZoB00sAWgIR0CQj6nw5NoKdX2UKGgGR0Bw5JxLkCFLaAdNGAFoCEdAkJDhnOB193V9lChoBkdAcTNa/yoXK2gHTSIBaAhHQJCSvBO58Sh1fZQoaAZHQG5O6+36Q/5oB00KAWgIR0CQksatLcsUdX2UKGgGR0BwjhVS4vvjaAdL82gIR0CQk6fseGO/dX2UKGgGR0BzL5bor4FiaAdNJgFoCEdAkJSv99+gDnV9lChoBkdAcjssGPgeimgHTRABaAhHQJCU7tb9qDd1fZQoaAZHQHFNNjslb/xoB00UAWgIR0CQlRJPZZjhdX2UKGgGR0ByIr4cm0E6aAdNeQFoCEdAkJUr1qWTo3V9lChoBkdAcLjQhfShJ2gHTT4BaAhHQJCVUYFaB7N1fZQoaAZHQHGvxLwnYxtoB02QAWgIR0CQlkD7ZWaMdX2UKGgGR0Bz1nCXQdCFaAdL82gIR0CQlkePq9oOdX2UKGgGR0BtBlCAtnPFaAdL7WgIR0CQlpGkep4sdX2UKGgGR0BxW9drwe/6aAdL92gIR0CQlwEdeY2LdX2UKGgGR0Bv0SifxtpFaAdNUwFoCEdAkJcHPiT+vXV9lChoBkdAbkXzBAOav2gHTRoBaAhHQJCXvQC0WuZ1fZQoaAZHQHNMoQz1schoB00IAWgIR0CQl+RqoIfKdX2UKGgGR0BxLKDyvs7daAdNGgFoCEdAkJltO/L1VnV9lChoBkdAcOIN+b3GoGgHS/doCEdAkJocu3+db3V9lChoBkdAcUFmbLEDQ2gHTRABaAhHQJCbzDcdo391fZQoaAZHQHKS+sgdOqNoB0vuaAhHQJCb3PE87p51fZQoaAZHQHJsFQ2uPmxoB00BAWgIR0CQnEe0Xxe+dX2UKGgGR0BwMrpIMBp6aAdNAAFoCEdAkJy+c2BJ7XV9lChoBkdAcdluCPIXCWgHTRABaAhHQJCdgYuTRpl1fZQoaAZHQHDmExVQyh1oB00hAWgIR0CQndZ+x4Y8dX2UKGgGR0BxZzqxC6YmaAdNZgFoCEdAkJ3p22XsxHV9lChoBkdAcRjsyzollmgHS+1oCEdAkJ5bupjtonV9lChoBkdAcy40Cih37mgHTQ8BaAhHQJCenXe3x4J1fZQoaAZHQGzLKW1MM7VoB0v5aAhHQJCevPzFuNx1fZQoaAZHQHC6VX7tReloB00PAWgIR0CQnvFUQ04zdX2UKGgGR0Byp+PBBRhuaAdL/mgIR0CQn6pXZGrkdX2UKGgGR0Br78LH+6y0aAdNYgFoCEdAkKEHEVFhHHV9lChoBkdAcHOwmVqveWgHTQkBaAhHQJCh30PH1e11fZQoaAZHQHNwJmdy1eBoB01cAWgIR0CQoqtkWhysdX2UKGgGR0BwjQ5BC2MLaAdL7WgIR0CQo9jOcDr7dX2UKGgGR0BzGSEGqxTsaAdNBAFoCEdAkLY+NT987nV9lChoBkdAciAVu76HkGgHS/RoCEdAkLZxU70WdnV9lChoBkdAcYMz3AVO9GgHTSUBaAhHQJC2jzqbBoF1fZQoaAZHQHD5V0Lc9GJoB002AWgIR0CQtx+H8CPqdX2UKGgGR0BJYpWNm16WaAdL9GgIR0CQt5sEq2BrdX2UKGgGR0BxprRx95QhaAdL82gIR0CQt7dS2phndX2UKGgGR0BwnDAeq7yyaAdNEgFoCEdAkLf29YfW+XV9lChoBkdAcKLA57w8XGgHS/loCEdAkLgr7j1f3XV9lChoBkdAUrgiu+yquWgHS+FoCEdAkLg9mg8KX3V9lChoBkdAcfH7ALy+YmgHTRYBaAhHQJC4hKmKqGV1fZQoaAZHQHEQRRIjGDNoB02VAWgIR0CQuKPgeii7dX2UKGgGR0BvIAJPZZjhaAdNMAFoCEdAkLjPWH1vl3V9lChoBkdAcAvkRBeHBWgHTRkBaAhHQJC6+3fAKv51fZQoaAZHQEltSWqtHQRoB0uXaAhHQJC9CjgydnV1fZQoaAZHQHDbdvGZNPBoB00wAWgIR0CQvaI7eVLSdX2UKGgGR0Bz013Tuv2XaAdNTQFoCEdAkL3MPe54GHV9lChoBkdAcgLcKgIyCWgHS+9oCEdAkL3fA44p+nV9lChoBkdAb3UG9pRGdGgHS/loCEdAkL5qm8/Uv3V9lChoBkdAcCIyN4qwyWgHS/NoCEdAkL92mYSg5HV9lChoBkdAb990KZ2IPGgHTSEBaAhHQJDACVgQYk51fZQoaAZHQG+4Iq9XcQBoB0v1aAhHQJDACkVN5+p1fZQoaAZHQHBMUTHsC1ZoB00KAWgIR0CQwDhvze41dX2UKGgGR0ByREYLsruqaAdNAQFoCEdAkMA9dJJ5FHV9lChoBkdAcMWZuQ6p52gHTTABaAhHQJDA/LOiWVx1fZQoaAZHQHKsZfMOf/ZoB01rAWgIR0CQwPz1K5CodX2UKGgGR0BxSGInBtUGaAdL/mgIR0CQwQIy0rsjdX2UKGgGR0BxxiBnSOR1aAdNOQFoCEdAkMH7f51vEXV9lChoBkdAcm3mY0EX+GgHTTIBaAhHQJDCBxMnJDF1fZQoaAZHQHGJDEaVD8doB00nAWgIR0CQxFo5xR2sdX2UKGgGR0BuogFxGUfQaAdL6WgIR0CQxM95Qgs9dX2UKGgGR0BySgona37UaAdL+2gIR0CQxZLL6k6+dX2UKGgGR0BzfMqPOpsHaAdNFQFoCEdAkMXQo1DSgHV9lChoBkdAcM4CdjG1hWgHTQ4BaAhHQJDGTkOqebx1fZQoaAZHQG9tWMju8btoB00VAWgIR0CQxxVS4vvjdX2UKGgGR0ByuQLMLWqcaAdL8WgIR0CQx1OH31zydX2UKGgGR0BwB8NkOI69aAdL+2gIR0CQx9voNd7fdX2UKGgGR0BwIkYoAn2JaAdL6GgIR0CQyBB9Cu2adX2UKGgGR0BvvW+K0lZ6aAdNJgFoCEdAkMiiimEXcnV9lChoBkdAcR83WWhRImgHTSUBaAhHQJDJGAOJ+Dx1fZQoaAZHQHG3WGM4tHxoB00OAWgIR0CQyVuTibUgdX2UKGgGR0Bw3nSCvovBaAdL9WgIR0CQydhJiAlOdX2UKGgGR0Bw+8RpUPxyaAdNRgFoCEdAkMpMfq5byHV9lChoBkdAcNcxQzk6tGgHTREBaAhHQJDKnOAy2x91fZQoaAZHQHJ7uHrQgLZoB01hAWgIR0CQy70a6z3RdX2UKGgGR0Bxhgsg+yJLaAdNAgFoCEdAkMybrC3w1HV9lChoBkdAcZJcG1QZXWgHS+poCEdAkM2rJnxri3V9lChoBkdAb5xJRO1v22gHTQ0BaAhHQJDOYzImw7l1fZQoaAZHQHMVgrYoRZloB01JAWgIR0CQz4kKu0TldX2UKGgGR0BuoAwwj+rEaAdNNQFoCEdAkM+eIl+mWXV9lChoBkdAcst0V8CxNmgHTRIBaAhHQJDP4zMzMzN1fZQoaAZHQHMPJZB9kSVoB00PAWgIR0CQ0MRF7UobdX2UKGgGR0BtSUrI5o4/aAdNFQFoCEdAkNDFXzUZvXV9lChoBkdAcKFZYxL0z2gHTSQBaAhHQJDQwyVObiJ1fZQoaAZHQHGH05EMLF5oB0v5aAhHQJDRQ1YQrc11fZQoaAZHQG/Rbg88s+VoB00PAWgIR0CQ0aexfOUudX2UKGgGR0Bx5yf9P1tgaAdL5mgIR0CQ0eeruIAPdX2UKGgGR0BxDL+S8rZraAdNJwFoCEdAkNMNmg8KX3V9lChoBkdAcuxfZmI0qGgHTQUBaAhHQJDUHnPmgap1fZQoaAZHQHHi/2Xb/OtoB01DAWgIR0CQ1H0U47zTdX2UKGgGR0Bu333UQTVUaAdL92gIR0CQ1KgwGnn/dX2UKGgGR0BxGptXPqs2aAdL5mgIR0CQ1dfBN21VdX2UKGgGR0BxjGF10T11aAdNBAFoCEdAkNYirPt2LnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f18fc17a4592f4a92ec82cacdc8b11345e15eabc76f12e299ed887648e08622
|
3 |
+
size 146715
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": 0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdbe0ed9f30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdbe0ed9fc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdbe0eda050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdbe0eda0e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdbe0eda170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdbe0eda200>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdbe0eda290>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdbe0eda320>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdbe0eda3b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdbe0eda440>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdbe0eda4d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdbe0eda560>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fdbe0ed6240>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1686975943614210081,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2ilL22YRc9bwzIvVA8Nr00txm+omb1PQAAAAAAAAAApqeVvSv5vj1zQ4U+pSs/vrpsGbzQ++c3AAAAAAAAAAArNZm+D0BSPyqmHb6Z/QC//8p5viCnebsAAAAAAAAAAJpfkLwphCy6GtV/uyLfdrdASTO7rg4QOgAAgD8AAIA/Gtb2vf1aWT/6J1S+xYrhvltPD7441X09AAAAAAAAAACNrDg+w1ZpvHQgCjuZ4CC5UUnOvbBLMLoAAIA/AACAP82YPjxI37I/dEGTPvL5Qb5bST+8tFYIvQAAAAAAAAAApmqzPYndaj5ieqI9lrSBvoy0CDwY9728AAAAAAAAAAAAgE47Qz1rPY7rFrx/DCS+HCA1vVGJuLwAAAAAAAAAAFYVdb4u4ZA+clmvPufvZL6jnUa9CvS8PQAAAAAAAAAAmt+/vMWq3zz37CQ+dOjFvdSA1rtjrRQ9AAAAAAAAAAAzqZE86tqtP4NH5z3XA66+WvevO1ov0T0AAAAAAAAAADPp+7wxFII9+l62vY4fUb6OGOy9SJSQvQAAAAAAAAAA5j3cPQGSSj62o1++yHqCvjK7gL0KH0Y9AAAAAAAAAAB2Kpo+1v6JP3whuD7yyhO/sG0HPxbxMz4AAAAAAAAAABP6eT7Spxg/V1Mrvo0myr6vYJ09myv0vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVIwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG99lefI0ZaMAWyUS/uMAXSUR0CQjvvrWy1NdX2UKGgGR0Bx5BPLxI8RaAdNCAFoCEdAkI8Lwz+FUXV9lChoBkdAcVNSGrS3LGgHTVUBaAhHQJCPNG+bmU51fZQoaAZHQHH5QIY3vQZoB00sAWgIR0CQj6nw5NoKdX2UKGgGR0Bw5JxLkCFLaAdNGAFoCEdAkJDhnOB193V9lChoBkdAcTNa/yoXK2gHTSIBaAhHQJCSvBO58Sh1fZQoaAZHQG5O6+36Q/5oB00KAWgIR0CQksatLcsUdX2UKGgGR0BwjhVS4vvjaAdL82gIR0CQk6fseGO/dX2UKGgGR0BzL5bor4FiaAdNJgFoCEdAkJSv99+gDnV9lChoBkdAcjssGPgeimgHTRABaAhHQJCU7tb9qDd1fZQoaAZHQHFNNjslb/xoB00UAWgIR0CQlRJPZZjhdX2UKGgGR0ByIr4cm0E6aAdNeQFoCEdAkJUr1qWTo3V9lChoBkdAcLjQhfShJ2gHTT4BaAhHQJCVUYFaB7N1fZQoaAZHQHGvxLwnYxtoB02QAWgIR0CQlkD7ZWaMdX2UKGgGR0Bz1nCXQdCFaAdL82gIR0CQlkePq9oOdX2UKGgGR0BtBlCAtnPFaAdL7WgIR0CQlpGkep4sdX2UKGgGR0BxW9drwe/6aAdL92gIR0CQlwEdeY2LdX2UKGgGR0Bv0SifxtpFaAdNUwFoCEdAkJcHPiT+vXV9lChoBkdAbkXzBAOav2gHTRoBaAhHQJCXvQC0WuZ1fZQoaAZHQHNMoQz1schoB00IAWgIR0CQl+RqoIfKdX2UKGgGR0BxLKDyvs7daAdNGgFoCEdAkJltO/L1VnV9lChoBkdAcOIN+b3GoGgHS/doCEdAkJocu3+db3V9lChoBkdAcUFmbLEDQ2gHTRABaAhHQJCbzDcdo391fZQoaAZHQHKS+sgdOqNoB0vuaAhHQJCb3PE87p51fZQoaAZHQHJsFQ2uPmxoB00BAWgIR0CQnEe0Xxe+dX2UKGgGR0BwMrpIMBp6aAdNAAFoCEdAkJy+c2BJ7XV9lChoBkdAcdluCPIXCWgHTRABaAhHQJCdgYuTRpl1fZQoaAZHQHDmExVQyh1oB00hAWgIR0CQndZ+x4Y8dX2UKGgGR0BxZzqxC6YmaAdNZgFoCEdAkJ3p22XsxHV9lChoBkdAcRjsyzollmgHS+1oCEdAkJ5bupjtonV9lChoBkdAcy40Cih37mgHTQ8BaAhHQJCenXe3x4J1fZQoaAZHQGzLKW1MM7VoB0v5aAhHQJCevPzFuNx1fZQoaAZHQHC6VX7tReloB00PAWgIR0CQnvFUQ04zdX2UKGgGR0Byp+PBBRhuaAdL/mgIR0CQn6pXZGrkdX2UKGgGR0Br78LH+6y0aAdNYgFoCEdAkKEHEVFhHHV9lChoBkdAcHOwmVqveWgHTQkBaAhHQJCh30PH1e11fZQoaAZHQHNwJmdy1eBoB01cAWgIR0CQoqtkWhysdX2UKGgGR0BwjQ5BC2MLaAdL7WgIR0CQo9jOcDr7dX2UKGgGR0BzGSEGqxTsaAdNBAFoCEdAkLY+NT987nV9lChoBkdAciAVu76HkGgHS/RoCEdAkLZxU70WdnV9lChoBkdAcYMz3AVO9GgHTSUBaAhHQJC2jzqbBoF1fZQoaAZHQHD5V0Lc9GJoB002AWgIR0CQtx+H8CPqdX2UKGgGR0BJYpWNm16WaAdL9GgIR0CQt5sEq2BrdX2UKGgGR0BxprRx95QhaAdL82gIR0CQt7dS2phndX2UKGgGR0BwnDAeq7yyaAdNEgFoCEdAkLf29YfW+XV9lChoBkdAcKLA57w8XGgHS/loCEdAkLgr7j1f3XV9lChoBkdAUrgiu+yquWgHS+FoCEdAkLg9mg8KX3V9lChoBkdAcfH7ALy+YmgHTRYBaAhHQJC4hKmKqGV1fZQoaAZHQHEQRRIjGDNoB02VAWgIR0CQuKPgeii7dX2UKGgGR0BvIAJPZZjhaAdNMAFoCEdAkLjPWH1vl3V9lChoBkdAcAvkRBeHBWgHTRkBaAhHQJC6+3fAKv51fZQoaAZHQEltSWqtHQRoB0uXaAhHQJC9CjgydnV1fZQoaAZHQHDbdvGZNPBoB00wAWgIR0CQvaI7eVLSdX2UKGgGR0Bz013Tuv2XaAdNTQFoCEdAkL3MPe54GHV9lChoBkdAcgLcKgIyCWgHS+9oCEdAkL3fA44p+nV9lChoBkdAb3UG9pRGdGgHS/loCEdAkL5qm8/Uv3V9lChoBkdAcCIyN4qwyWgHS/NoCEdAkL92mYSg5HV9lChoBkdAb990KZ2IPGgHTSEBaAhHQJDACVgQYk51fZQoaAZHQG+4Iq9XcQBoB0v1aAhHQJDACkVN5+p1fZQoaAZHQHBMUTHsC1ZoB00KAWgIR0CQwDhvze41dX2UKGgGR0ByREYLsruqaAdNAQFoCEdAkMA9dJJ5FHV9lChoBkdAcMWZuQ6p52gHTTABaAhHQJDA/LOiWVx1fZQoaAZHQHKsZfMOf/ZoB01rAWgIR0CQwPz1K5CodX2UKGgGR0BxSGInBtUGaAdL/mgIR0CQwQIy0rsjdX2UKGgGR0BxxiBnSOR1aAdNOQFoCEdAkMH7f51vEXV9lChoBkdAcm3mY0EX+GgHTTIBaAhHQJDCBxMnJDF1fZQoaAZHQHGJDEaVD8doB00nAWgIR0CQxFo5xR2sdX2UKGgGR0BuogFxGUfQaAdL6WgIR0CQxM95Qgs9dX2UKGgGR0BySgona37UaAdL+2gIR0CQxZLL6k6+dX2UKGgGR0BzfMqPOpsHaAdNFQFoCEdAkMXQo1DSgHV9lChoBkdAcM4CdjG1hWgHTQ4BaAhHQJDGTkOqebx1fZQoaAZHQG9tWMju8btoB00VAWgIR0CQxxVS4vvjdX2UKGgGR0ByuQLMLWqcaAdL8WgIR0CQx1OH31zydX2UKGgGR0BwB8NkOI69aAdL+2gIR0CQx9voNd7fdX2UKGgGR0BwIkYoAn2JaAdL6GgIR0CQyBB9Cu2adX2UKGgGR0BvvW+K0lZ6aAdNJgFoCEdAkMiiimEXcnV9lChoBkdAcR83WWhRImgHTSUBaAhHQJDJGAOJ+Dx1fZQoaAZHQHG3WGM4tHxoB00OAWgIR0CQyVuTibUgdX2UKGgGR0Bw3nSCvovBaAdL9WgIR0CQydhJiAlOdX2UKGgGR0Bw+8RpUPxyaAdNRgFoCEdAkMpMfq5byHV9lChoBkdAcNcxQzk6tGgHTREBaAhHQJDKnOAy2x91fZQoaAZHQHJ7uHrQgLZoB01hAWgIR0CQy70a6z3RdX2UKGgGR0Bxhgsg+yJLaAdNAgFoCEdAkMybrC3w1HV9lChoBkdAcZJcG1QZXWgHS+poCEdAkM2rJnxri3V9lChoBkdAb5xJRO1v22gHTQ0BaAhHQJDOYzImw7l1fZQoaAZHQHMVgrYoRZloB01JAWgIR0CQz4kKu0TldX2UKGgGR0BuoAwwj+rEaAdNNQFoCEdAkM+eIl+mWXV9lChoBkdAcst0V8CxNmgHTRIBaAhHQJDP4zMzMzN1fZQoaAZHQHMPJZB9kSVoB00PAWgIR0CQ0MRF7UobdX2UKGgGR0BtSUrI5o4/aAdNFQFoCEdAkNDFXzUZvXV9lChoBkdAcKFZYxL0z2gHTSQBaAhHQJDQwyVObiJ1fZQoaAZHQHGH05EMLF5oB0v5aAhHQJDRQ1YQrc11fZQoaAZHQG/Rbg88s+VoB00PAWgIR0CQ0aexfOUudX2UKGgGR0Bx5yf9P1tgaAdL5mgIR0CQ0eeruIAPdX2UKGgGR0BxDL+S8rZraAdNJwFoCEdAkNMNmg8KX3V9lChoBkdAcuxfZmI0qGgHTQUBaAhHQJDUHnPmgap1fZQoaAZHQHHi/2Xb/OtoB01DAWgIR0CQ1H0U47zTdX2UKGgGR0Bu333UQTVUaAdL92gIR0CQ1KgwGnn/dX2UKGgGR0BxGptXPqs2aAdL5mgIR0CQ1dfBN21VdX2UKGgGR0BxjGF10T11aAdNBAFoCEdAkNYirPt2LnVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afeeda81289e6a68ae0611082a1e93fd3a8b8a2b4f8d1be4e8d5b442b553ef89
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4404411eaaa7e4bc9ddf46d87ce0a570696934b26a51035eb47332befac98ea7
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 264.78143549166134, "std_reward": 22.892628751382965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T04:58:38.268555"}
|