Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 237.40 +/- 15.84
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce6cad1bd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce6cad1c60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce6cad1cf0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce6cad1d80>", "_build": "<function ActorCriticPolicy._build at 0x7fce6cad1e10>", "forward": "<function ActorCriticPolicy.forward at 0x7fce6cad1ea0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fce6cad1f30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce6cad1fc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fce6cad2050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce6cad20e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce6cad2170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce6cad2200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcdfa13a4c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 906064, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686974005736525370, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqYqDya0Y4+bukKvRbILL70Zhw9hYsOvQAAAAAAAAAA5oc3vo7ZMz/y3O494fR1vv6mdLw+2sk8AAAAAAAAAAD6CSe+yI/SPaHmCj3e/Fu+v+ByvYrFsj0AAAAAAAAAAGZCIT6/920/hswtPpeSor6OhCo+XSK0vQAAAAAAAAAA5l4pvdTh5D3Rjow9UyVJvrRkTzwAGpg8AAAAAAAAAACNjdK91BMMPvAPtT1Rb2C+nwVBPXpKGj4AAAAAAAAAAOb5Kb7dhRk/43CrvIrxfb7bG0y9erqovAAAAAAAAAAAIHkZvlSr5j2x6RQ+lXoOvi0B+Lv6amU8AAAAAAAAAACa2Gy9hUHBu5LhiLumCLA8bNwhPSqWk70AAIA/AACAP4Dg3j22ZYs/hzEvPpNi3r7UjwA+ZnZTPAAAAAAAAAAA9q5WvkHMYT8Fie48xE9Tvlg1ir1GmvQ9AAAAAAAAAADARIA9VygnPnsKob3tcC6+2ErEvHoDar0AAAAAAAAAAJqMlz3vDxU/wUelvUlegr6WgLm7skQQvQAAAAAAAAAAM99dvT27WD445lW9NrosvlDZHL1OCFq9AAAAAAAAAAAzuz87BTbIu2OS+DtLfYI8dBEWPd7JXb0AAIA/AACAP828YDsRnjo+DFaHPMzdc771uTg85jYsPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.09887999999999997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4bR3V09yOMAWyUTVUBjAF0lEdAkMFCGSIP9XV9lChoBkdAR1Efq5byH2gHTRIBaAhHQJDD9MlC1JF1fZQoaAZHQG7CoxHoX9BoB01pAWgIR0CQxADOkcjrdX2UKGgGR0BolNugpSaWaAdNDANoCEdAkMVPboKUmnV9lChoBkdAcZF+mm+Cb2gHTcABaAhHQJDFzt4RmK91fZQoaAZHQG42hhpg1FZoB01gAWgIR0CQxfnscABDdX2UKGgGR0BvkqR+z+m4aAdNPAFoCEdAkMbXB55Z83V9lChoBkdAbx56zE74jGgHTT4BaAhHQJDHwCA+Y+l1fZQoaAZHQHB+PlQuVX5oB009AWgIR0CQyeZAIIGAdX2UKGgGR0BwZehSLqD9aAdNXAFoCEdAkMrU7r9l3HV9lChoBkdAbEynZ00WM2gHTVgBaAhHQJDK7SmZVn51fZQoaAZHQHA4k+gUUPBoB00vAWgIR0CQy1AuZkTYdX2UKGgGR0AT/8xbjcVQaAdNBgFoCEdAkMvKgVXV9XV9lChoBkdAbcnbRF7UomgHTWQBaAhHQJDMFA6dUbV1fZQoaAZHQHKOeVTrE+BoB01ZAWgIR0CQzcgTRIBjdX2UKGgGR0BuYcAmzBykaAdNvgFoCEdAkM7gTRIBinV9lChoBkdAbkL3Qla8pWgHTTQBaAhHQJDQP114gRt1fZQoaAZHQG7xXjMmnfloB003AWgIR0CQ0FZnL7oCdX2UKGgGR0BwczFUADJVaAdNqwFoCEdAkNIHHeaa1HV9lChoBkdARVODJ2dNFmgHTQ0BaAhHQJDSc7q6e5F1fZQoaAZHQHHKGG7BfrtoB00yAWgIR0CQ0vLNfPX1dX2UKGgGR0BvcggieNDMaAdNWQFoCEdAkNOUOuq3mXV9lChoBkdAcja6qbSZ0GgHTW8BaAhHQJDTy2gFotd1fZQoaAZHQHCWOZLIxQBoB01+AWgIR0CQ1MUJv5xjdX2UKGgGR0BIFSRSxZ+yaAdL82gIR0CQ10V/tpmFdX2UKGgGR0BuZm+7Dl5oaAdNUwFoCEdAkNfoGpuMuXV9lChoBkdAbVyocaOxS2gHTU4BaAhHQJDYMZ3s5XF1fZQoaAZHQG8k/FzdUKloB01cAWgIR0CQ2FrAxi5NdX2UKGgGR0BxasTIvJzUaAdNYAFoCEdAkNleBQN1AHV9lChoBkdAbtwOKfnOjmgHTX8BaAhHQJDa2JHiFTN1fZQoaAZHQHFbHVCojwBoB01TAWgIR0CQ3BJyQxN7dX2UKGgGR0A83GfwqiGnaAdNCAFoCEdAkNyjIJZ4fXV9lChoBkdAQ1T/jsD4g2gHS/doCEdAkN0fhIe5nXV9lChoBkdAb2GE+xGDtmgHTVUBaAhHQJDdjhIe5nV1fZQoaAZHQG56c/UvwmVoB01bAWgIR0CQ3bHWBjFydX2UKGgGR0BwakNd7fHhaAdNPQFoCEdAkN8Tkp7TlXV9lChoBkdAcJNYtg8bJmgHTWEBaAhHQJDhYk7fYSR1fZQoaAZHQGy0YD1XeWRoB02gAWgIR0CQ4iB4Uvf1dX2UKGgGR0BwC3whGH58aAdNeQFoCEdAkPRjKYAsCnV9lChoBkdAbAkfnOjZc2gHTUMBaAhHQJD02PmxMWZ1fZQoaAZHQHFdHVsk6cRoB02gAmgIR0CQ9QJiy6czdX2UKGgGR0Bx8yyE+PilaAdNUwFoCEdAkPaPgeii7HV9lChoBkdAcGvHN5dGAmgHTVsBaAhHQJD2uyv9tMx1fZQoaAZHQHGiBJmNBGBoB01bAWgIR0CQ9+m6XjU/dX2UKGgGR0BwuwbJfYz0aAdNhwFoCEdAkPgl/6O5rnV9lChoBkdATFssOG0u2GgHTSIBaAhHQJD5beUILPV1fZQoaAZHQG7lQEhaC+VoB00YAWgIR0CQ+Z/zreImdX2UKGgGR0Bw+u9/SYw7aAdNYQFoCEdAkPmsDSw4bXV9lChoBkdAa0XcD8tPHmgHTVcBaAhHQJD6YnTiKix1fZQoaAZHQHFCzxG2CuloB02AAWgIR0CQ/Un6l+EzdX2UKGgGR0BwAwunMt9QaAdNsQFoCEdAkP5j1K5CnnV9lChoBkdAbsMCSzPa+WgHTUUBaAhHQJD/z1RLsa91fZQoaAZHQHGwwIIF/x5oB00gAWgIR0CRAFZPEbYLdX2UKGgGR0BtENMj/uLKaAdNPAFoCEdAkQFr2g398HV9lChoBkdAcSIoH9m6G2gHTU4BaAhHQJEBu508vEl1fZQoaAZHQGsM8EV32VVoB01kAWgIR0CRBWyhzvJBdX2UKGgGR0ByMXC3w1BMaAdNEQJoCEdAkQYBm5DqnnV9lChoBkdAO6eqioKlYWgHTSsBaAhHQJEGoKw6hg51fZQoaAZHQG2WYNZvDP5oB01TAWgIR0CRBq/lQuVYdX2UKGgGR0BxpRNQCSzPaAdNOAFoCEdAkQb4oNNJv3V9lChoBkdAbGiYa5wwTWgHTTgBaAhHQJEHMYaYNRZ1fZQoaAZHQGzToA4n4PBoB01uAWgIR0CRB52SdOIqdX2UKGgGR0Bv85SUC7sfaAdNoQFoCEdAkQhm6kIomXV9lChoBkdAa8NiExqO92gHTVYBaAhHQJEJNKdxyXF1fZQoaAZHQDSsDuBtk4FoB0v9aAhHQJEJtNnGsFN1fZQoaAZHQHFgp+6RQrNoB01bAmgIR0CRCyX5FgDzdX2UKGgGR0Bt6S0Sh8IBaAdNSAFoCEdAkQtyAxzq8nV9lChoBkdAbitxIatLc2gHTVsBaAhHQJEOhvm5lOJ1fZQoaAZHQG11BYeT3ZhoB01AAWgIR0CRD0bDdgv2dX2UKGgGR0BvEbNUwSJ1aAdNaAFoCEdAkRDuYplSTHV9lChoBkdAbzo7sfJV82gHTU0BaAhHQJET4L0Bfa91fZQoaAZHQHD+5oTPBzpoB01KAWgIR0CRFQ6XSjQBdX2UKGgGR0BxDN4QjD8+aAdNUQFoCEdAkRVf4dp7C3V9lChoBkdAbDpgmZ3LWGgHTSEBaAhHQJEWMolUp/h1fZQoaAZHQGny4s/Y8MdoB01cAWgIR0CRFk31BdD6dX2UKGgGR0BwOpCx/ustaAdNUAFoCEdAkRZyk0rK/3V9lChoBkdAcCtnkDIRy2gHTVsBaAhHQJEWfsKLKmt1fZQoaAZHQGuqRMWXTmZoB014AWgIR0CRFrG6f8MvdX2UKGgGR0AvLwDvE0iyaAdL/WgIR0CRFv7j1f3OdX2UKGgGR0BwiG5hBqsVaAdNVAFoCEdAkRdP3rUsnXV9lChoBkdAbXbd9Dx9X2gHTQsCaAhHQJEXrMINVip1fZQoaAZHQHHcEYj0L+hoB01yAWgIR0CRGVVBD5TIdX2UKGgGR0BxTI078vVWaAdNcwFoCEdAkRsGDg62fHV9lChoBkdAb7+IHC4z8GgHTWEBaAhHQJEdVid8Rcx1fZQoaAZHQHEeTNt65XloB01FAWgIR0CRL2qFAVwhdX2UKGgGR0BxIgnpjc2zaAdNcAFoCEdAkS/bzXjEN3V9lChoBkdAcK/wiJO32GgHTUsBaAhHQJEyO2BreqJ1fZQoaAZHQHDH7DMvAXVoB004AWgIR0CRMp4c3l0YdX2UKGgGR0BweFSDRMN+aAdNIAFoCEdAkTLCvs7dSHV9lChoBkdAbyw5BC2MKmgHTVYBaAhHQJEztNrTH811fZQoaAZHQHAUAyM1jy5oB00ZAWgIR0CRM8vtMPBjdX2UKGgGR0Bv4nrOZ9eAaAdNQgFoCEdAkTPiI1tO23V9lChoBkdAb+IEW69TP2gHTTkBaAhHQJE0NGAkLQZ1fZQoaAZHQHEb/TPSlWRoB01iAWgIR0CRNPynk1dgdX2UKGgGR0Bwd/b0voNeaAdNZwFoCEdAkTVWyLQ5WHV9lChoBkdAb4ZpCa7Va2gHTW4BaAhHQJE2cdFOO811fZQoaAZHQGxXGgi/wiJoB02NAWgIR0CRNrP2PDHfdX2UKGgGR0BxJCZ/kNnXaAdNWQFoCEdAkTf0FW4mTnV9lChoBkdAbDn/EOy3TmgHTUgBaAhHQJE5FktmL+B1fZQoaAZHQHGBSYG+sYFoB00cAWgIR0CROaMn7YTTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 220, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c9f99741aab51986d72779be6132b4bde08f2ac5ff1011fb13454f1409170eb
|
3 |
+
size 146748
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fce6cad1bd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce6cad1c60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce6cad1cf0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce6cad1d80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fce6cad1e10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fce6cad1ea0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fce6cad1f30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce6cad1fc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fce6cad2050>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce6cad20e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce6cad2170>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce6cad2200>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcdfa13a4c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 906064,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1686974005736525370,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqYqDya0Y4+bukKvRbILL70Zhw9hYsOvQAAAAAAAAAA5oc3vo7ZMz/y3O494fR1vv6mdLw+2sk8AAAAAAAAAAD6CSe+yI/SPaHmCj3e/Fu+v+ByvYrFsj0AAAAAAAAAAGZCIT6/920/hswtPpeSor6OhCo+XSK0vQAAAAAAAAAA5l4pvdTh5D3Rjow9UyVJvrRkTzwAGpg8AAAAAAAAAACNjdK91BMMPvAPtT1Rb2C+nwVBPXpKGj4AAAAAAAAAAOb5Kb7dhRk/43CrvIrxfb7bG0y9erqovAAAAAAAAAAAIHkZvlSr5j2x6RQ+lXoOvi0B+Lv6amU8AAAAAAAAAACa2Gy9hUHBu5LhiLumCLA8bNwhPSqWk70AAIA/AACAP4Dg3j22ZYs/hzEvPpNi3r7UjwA+ZnZTPAAAAAAAAAAA9q5WvkHMYT8Fie48xE9Tvlg1ir1GmvQ9AAAAAAAAAADARIA9VygnPnsKob3tcC6+2ErEvHoDar0AAAAAAAAAAJqMlz3vDxU/wUelvUlegr6WgLm7skQQvQAAAAAAAAAAM99dvT27WD445lW9NrosvlDZHL1OCFq9AAAAAAAAAAAzuz87BTbIu2OS+DtLfYI8dBEWPd7JXb0AAIA/AACAP828YDsRnjo+DFaHPMzdc771uTg85jYsPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.09887999999999997,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG4bR3V09yOMAWyUTVUBjAF0lEdAkMFCGSIP9XV9lChoBkdAR1Efq5byH2gHTRIBaAhHQJDD9MlC1JF1fZQoaAZHQG7CoxHoX9BoB01pAWgIR0CQxADOkcjrdX2UKGgGR0BolNugpSaWaAdNDANoCEdAkMVPboKUmnV9lChoBkdAcZF+mm+Cb2gHTcABaAhHQJDFzt4RmK91fZQoaAZHQG42hhpg1FZoB01gAWgIR0CQxfnscABDdX2UKGgGR0BvkqR+z+m4aAdNPAFoCEdAkMbXB55Z83V9lChoBkdAbx56zE74jGgHTT4BaAhHQJDHwCA+Y+l1fZQoaAZHQHB+PlQuVX5oB009AWgIR0CQyeZAIIGAdX2UKGgGR0BwZehSLqD9aAdNXAFoCEdAkMrU7r9l3HV9lChoBkdAbEynZ00WM2gHTVgBaAhHQJDK7SmZVn51fZQoaAZHQHA4k+gUUPBoB00vAWgIR0CQy1AuZkTYdX2UKGgGR0AT/8xbjcVQaAdNBgFoCEdAkMvKgVXV9XV9lChoBkdAbcnbRF7UomgHTWQBaAhHQJDMFA6dUbV1fZQoaAZHQHKOeVTrE+BoB01ZAWgIR0CQzcgTRIBjdX2UKGgGR0BuYcAmzBykaAdNvgFoCEdAkM7gTRIBinV9lChoBkdAbkL3Qla8pWgHTTQBaAhHQJDQP114gRt1fZQoaAZHQG7xXjMmnfloB003AWgIR0CQ0FZnL7oCdX2UKGgGR0BwczFUADJVaAdNqwFoCEdAkNIHHeaa1HV9lChoBkdARVODJ2dNFmgHTQ0BaAhHQJDSc7q6e5F1fZQoaAZHQHHKGG7BfrtoB00yAWgIR0CQ0vLNfPX1dX2UKGgGR0BvcggieNDMaAdNWQFoCEdAkNOUOuq3mXV9lChoBkdAcja6qbSZ0GgHTW8BaAhHQJDTy2gFotd1fZQoaAZHQHCWOZLIxQBoB01+AWgIR0CQ1MUJv5xjdX2UKGgGR0BIFSRSxZ+yaAdL82gIR0CQ10V/tpmFdX2UKGgGR0BuZm+7Dl5oaAdNUwFoCEdAkNfoGpuMuXV9lChoBkdAbVyocaOxS2gHTU4BaAhHQJDYMZ3s5XF1fZQoaAZHQG8k/FzdUKloB01cAWgIR0CQ2FrAxi5NdX2UKGgGR0BxasTIvJzUaAdNYAFoCEdAkNleBQN1AHV9lChoBkdAbtwOKfnOjmgHTX8BaAhHQJDa2JHiFTN1fZQoaAZHQHFbHVCojwBoB01TAWgIR0CQ3BJyQxN7dX2UKGgGR0A83GfwqiGnaAdNCAFoCEdAkNyjIJZ4fXV9lChoBkdAQ1T/jsD4g2gHS/doCEdAkN0fhIe5nXV9lChoBkdAb2GE+xGDtmgHTVUBaAhHQJDdjhIe5nV1fZQoaAZHQG56c/UvwmVoB01bAWgIR0CQ3bHWBjFydX2UKGgGR0BwakNd7fHhaAdNPQFoCEdAkN8Tkp7TlXV9lChoBkdAcJNYtg8bJmgHTWEBaAhHQJDhYk7fYSR1fZQoaAZHQGy0YD1XeWRoB02gAWgIR0CQ4iB4Uvf1dX2UKGgGR0BwC3whGH58aAdNeQFoCEdAkPRjKYAsCnV9lChoBkdAbAkfnOjZc2gHTUMBaAhHQJD02PmxMWZ1fZQoaAZHQHFdHVsk6cRoB02gAmgIR0CQ9QJiy6czdX2UKGgGR0Bx8yyE+PilaAdNUwFoCEdAkPaPgeii7HV9lChoBkdAcGvHN5dGAmgHTVsBaAhHQJD2uyv9tMx1fZQoaAZHQHGiBJmNBGBoB01bAWgIR0CQ9+m6XjU/dX2UKGgGR0BwuwbJfYz0aAdNhwFoCEdAkPgl/6O5rnV9lChoBkdATFssOG0u2GgHTSIBaAhHQJD5beUILPV1fZQoaAZHQG7lQEhaC+VoB00YAWgIR0CQ+Z/zreImdX2UKGgGR0Bw+u9/SYw7aAdNYQFoCEdAkPmsDSw4bXV9lChoBkdAa0XcD8tPHmgHTVcBaAhHQJD6YnTiKix1fZQoaAZHQHFCzxG2CuloB02AAWgIR0CQ/Un6l+EzdX2UKGgGR0BwAwunMt9QaAdNsQFoCEdAkP5j1K5CnnV9lChoBkdAbsMCSzPa+WgHTUUBaAhHQJD/z1RLsa91fZQoaAZHQHGwwIIF/x5oB00gAWgIR0CRAFZPEbYLdX2UKGgGR0BtENMj/uLKaAdNPAFoCEdAkQFr2g398HV9lChoBkdAcSIoH9m6G2gHTU4BaAhHQJEBu508vEl1fZQoaAZHQGsM8EV32VVoB01kAWgIR0CRBWyhzvJBdX2UKGgGR0ByMXC3w1BMaAdNEQJoCEdAkQYBm5DqnnV9lChoBkdAO6eqioKlYWgHTSsBaAhHQJEGoKw6hg51fZQoaAZHQG2WYNZvDP5oB01TAWgIR0CRBq/lQuVYdX2UKGgGR0BxpRNQCSzPaAdNOAFoCEdAkQb4oNNJv3V9lChoBkdAbGiYa5wwTWgHTTgBaAhHQJEHMYaYNRZ1fZQoaAZHQGzToA4n4PBoB01uAWgIR0CRB52SdOIqdX2UKGgGR0Bv85SUC7sfaAdNoQFoCEdAkQhm6kIomXV9lChoBkdAa8NiExqO92gHTVYBaAhHQJEJNKdxyXF1fZQoaAZHQDSsDuBtk4FoB0v9aAhHQJEJtNnGsFN1fZQoaAZHQHFgp+6RQrNoB01bAmgIR0CRCyX5FgDzdX2UKGgGR0Bt6S0Sh8IBaAdNSAFoCEdAkQtyAxzq8nV9lChoBkdAbitxIatLc2gHTVsBaAhHQJEOhvm5lOJ1fZQoaAZHQG11BYeT3ZhoB01AAWgIR0CRD0bDdgv2dX2UKGgGR0BvEbNUwSJ1aAdNaAFoCEdAkRDuYplSTHV9lChoBkdAbzo7sfJV82gHTU0BaAhHQJET4L0Bfa91fZQoaAZHQHD+5oTPBzpoB01KAWgIR0CRFQ6XSjQBdX2UKGgGR0BxDN4QjD8+aAdNUQFoCEdAkRVf4dp7C3V9lChoBkdAbDpgmZ3LWGgHTSEBaAhHQJEWMolUp/h1fZQoaAZHQGny4s/Y8MdoB01cAWgIR0CRFk31BdD6dX2UKGgGR0BwOpCx/ustaAdNUAFoCEdAkRZyk0rK/3V9lChoBkdAcCtnkDIRy2gHTVsBaAhHQJEWfsKLKmt1fZQoaAZHQGuqRMWXTmZoB014AWgIR0CRFrG6f8MvdX2UKGgGR0AvLwDvE0iyaAdL/WgIR0CRFv7j1f3OdX2UKGgGR0BwiG5hBqsVaAdNVAFoCEdAkRdP3rUsnXV9lChoBkdAbXbd9Dx9X2gHTQsCaAhHQJEXrMINVip1fZQoaAZHQHHcEYj0L+hoB01yAWgIR0CRGVVBD5TIdX2UKGgGR0BxTI078vVWaAdNcwFoCEdAkRsGDg62fHV9lChoBkdAb7+IHC4z8GgHTWEBaAhHQJEdVid8Rcx1fZQoaAZHQHEeTNt65XloB01FAWgIR0CRL2qFAVwhdX2UKGgGR0BxIgnpjc2zaAdNcAFoCEdAkS/bzXjEN3V9lChoBkdAcK/wiJO32GgHTUsBaAhHQJEyO2BreqJ1fZQoaAZHQHDH7DMvAXVoB004AWgIR0CRMp4c3l0YdX2UKGgGR0BweFSDRMN+aAdNIAFoCEdAkTLCvs7dSHV9lChoBkdAbyw5BC2MKmgHTVYBaAhHQJEztNrTH811fZQoaAZHQHAUAyM1jy5oB00ZAWgIR0CRM8vtMPBjdX2UKGgGR0Bv4nrOZ9eAaAdNQgFoCEdAkTPiI1tO23V9lChoBkdAb+IEW69TP2gHTTkBaAhHQJE0NGAkLQZ1fZQoaAZHQHEb/TPSlWRoB01iAWgIR0CRNPynk1dgdX2UKGgGR0Bwd/b0voNeaAdNZwFoCEdAkTVWyLQ5WHV9lChoBkdAb4ZpCa7Va2gHTW4BaAhHQJE2cdFOO811fZQoaAZHQGxXGgi/wiJoB02NAWgIR0CRNrP2PDHfdX2UKGgGR0BxJCZ/kNnXaAdNWQFoCEdAkTf0FW4mTnV9lChoBkdAbDn/EOy3TmgHTUgBaAhHQJE5FktmL+B1fZQoaAZHQHGBSYG+sYFoB00cAWgIR0CROaMn7YTTdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 220,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b63185b9f8d5f25393e18ea09adc1187c93951c4bd4fcc2562bb48a62fdb4ade
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5703d517c955a34aff3dd4059ff4b8c4c390db9e4a5b15985b398b0c2bffad48
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (173 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 237.39595077162704, "std_reward": 15.836792798680477, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-17T04:18:44.454231"}
|