matthieulel commited on
Commit
262847f
1 Parent(s): 96dc088

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-femto-1k-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: convnextv2-femto-1k-224-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # convnextv2-femto-1k-224-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-femto-1k-224](https://huggingface.co/facebook/convnextv2-femto-1k-224) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4423
24
+ - Accuracy: 0.8517
25
+ - Precision: 0.8483
26
+ - Recall: 0.8517
27
+ - F1: 0.8489
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.7326 | 0.99 | 62 | 1.6140 | 0.4758 | 0.4530 | 0.4758 | 0.4312 |
62
+ | 1.1706 | 2.0 | 125 | 1.0827 | 0.6218 | 0.6294 | 0.6218 | 0.5983 |
63
+ | 0.9046 | 2.99 | 187 | 0.7418 | 0.7542 | 0.7566 | 0.7542 | 0.7351 |
64
+ | 0.7305 | 4.0 | 250 | 0.6540 | 0.7880 | 0.7823 | 0.7880 | 0.7789 |
65
+ | 0.6378 | 4.99 | 312 | 0.5903 | 0.8089 | 0.8054 | 0.8089 | 0.8047 |
66
+ | 0.6447 | 6.0 | 375 | 0.5915 | 0.7954 | 0.8041 | 0.7954 | 0.7865 |
67
+ | 0.6228 | 6.99 | 437 | 0.5513 | 0.8162 | 0.8201 | 0.8162 | 0.8164 |
68
+ | 0.5758 | 8.0 | 500 | 0.5553 | 0.8078 | 0.8094 | 0.8078 | 0.8033 |
69
+ | 0.5831 | 8.99 | 562 | 0.5207 | 0.8191 | 0.8246 | 0.8191 | 0.8162 |
70
+ | 0.537 | 10.0 | 625 | 0.4981 | 0.8286 | 0.8233 | 0.8286 | 0.8222 |
71
+ | 0.5322 | 10.99 | 687 | 0.4830 | 0.8337 | 0.8340 | 0.8337 | 0.8332 |
72
+ | 0.5171 | 12.0 | 750 | 0.4931 | 0.8253 | 0.8258 | 0.8253 | 0.8233 |
73
+ | 0.5092 | 12.99 | 812 | 0.4891 | 0.8360 | 0.8360 | 0.8360 | 0.8325 |
74
+ | 0.5245 | 14.0 | 875 | 0.4585 | 0.8450 | 0.8452 | 0.8450 | 0.8431 |
75
+ | 0.4585 | 14.99 | 937 | 0.4682 | 0.8422 | 0.8407 | 0.8422 | 0.8407 |
76
+ | 0.455 | 16.0 | 1000 | 0.4659 | 0.8388 | 0.8370 | 0.8388 | 0.8357 |
77
+ | 0.4175 | 16.99 | 1062 | 0.4633 | 0.8382 | 0.8363 | 0.8382 | 0.8351 |
78
+ | 0.4574 | 18.0 | 1125 | 0.4479 | 0.8450 | 0.8435 | 0.8450 | 0.8428 |
79
+ | 0.4593 | 18.99 | 1187 | 0.4577 | 0.8439 | 0.8446 | 0.8439 | 0.8430 |
80
+ | 0.4423 | 20.0 | 1250 | 0.4589 | 0.8461 | 0.8426 | 0.8461 | 0.8413 |
81
+ | 0.4141 | 20.99 | 1312 | 0.4732 | 0.8326 | 0.8339 | 0.8326 | 0.8299 |
82
+ | 0.4534 | 22.0 | 1375 | 0.4477 | 0.8461 | 0.8422 | 0.8461 | 0.8433 |
83
+ | 0.4011 | 22.99 | 1437 | 0.4614 | 0.8399 | 0.8403 | 0.8399 | 0.8390 |
84
+ | 0.4162 | 24.0 | 1500 | 0.4576 | 0.8450 | 0.8443 | 0.8450 | 0.8437 |
85
+ | 0.4291 | 24.99 | 1562 | 0.4609 | 0.8472 | 0.8441 | 0.8472 | 0.8439 |
86
+ | 0.3698 | 26.0 | 1625 | 0.4469 | 0.8506 | 0.8484 | 0.8506 | 0.8482 |
87
+ | 0.3957 | 26.99 | 1687 | 0.4488 | 0.8478 | 0.8464 | 0.8478 | 0.8464 |
88
+ | 0.4053 | 28.0 | 1750 | 0.4463 | 0.8551 | 0.8509 | 0.8551 | 0.8514 |
89
+ | 0.377 | 28.99 | 1812 | 0.4429 | 0.8540 | 0.8504 | 0.8540 | 0.8508 |
90
+ | 0.381 | 29.76 | 1860 | 0.4423 | 0.8517 | 0.8483 | 0.8517 | 0.8489 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5a0b73be61aa66db954c71138446fdd7699b93d88eb43fad4b540963480a4bc
3
  size 19424664
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59823481fc149d67cabcff6f9006ba145b11ba005df152f484d56f4a855bb6ad
3
  size 19424664