metadata
license: bsd-3-clause
base_model: MIT/ast-finetuned-audioset-10-10-0.4593
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.89
ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.3030
- Accuracy: 0.89
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9203 | 1.0 | 112 | 0.6901 | 0.82 |
0.2906 | 1.99 | 224 | 0.4069 | 0.86 |
0.3416 | 3.0 | 337 | 0.3651 | 0.84 |
0.2143 | 4.0 | 449 | 0.3208 | 0.89 |
0.0052 | 4.99 | 561 | 0.3180 | 0.88 |
0.0037 | 6.0 | 674 | 0.3233 | 0.88 |
0.0011 | 6.99 | 786 | 0.2975 | 0.9 |
0.0011 | 8.0 | 899 | 0.3200 | 0.88 |
0.0325 | 9.0 | 1011 | 0.3028 | 0.89 |
0.0008 | 9.97 | 1120 | 0.3030 | 0.89 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2