marutitecblic commited on
Commit
cdf87b5
·
1 Parent(s): fd8a22d

Add LFS tracked files in new clone

Browse files
README copy.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - HuggingFaceM4/WebSight
5
+ language:
6
+ - en
7
+ tags:
8
+ - code
9
+ ---
10
+
11
+
12
+ **Try out the [demo](https://huggingface.co/spaces/HuggingFaceM4/screenshot2html)!**
13
+
14
+ # Model Description
15
+
16
+ This model converts screenshots of website components into HTML/CSS codes.
17
+
18
+ It is based on a very early checkpoint of our forthcoming vision-language foundation model, which has been fine-tuned using the [Websight](https://huggingface.co/datasets/HuggingFaceM4/Websight) dataset.
19
+
20
+ This is very much an alpha version. The goal is to kick off an effort to develop improved models capable of converting a website screenshot into actual code.
21
+
22
+ # Code snippet
23
+
24
+ ```python
25
+ import torch
26
+
27
+ from PIL import Image
28
+ from transformers import AutoModelForCausalLM, AutoProcessor
29
+
30
+ from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
31
+ from transformers.image_transforms import resize, to_channel_dimension_format
32
+
33
+ DEVICE = torch.device("cuda")
34
+ PROCESSOR = AutoProcessor.from_pretrained(
35
+ "HuggingFaceM4/VLM_WebSight_finetuned",
36
+ token=API_TOKEN,
37
+ )
38
+ MODEL = AutoModelForCausalLM.from_pretrained(
39
+ "HuggingFaceM4/VLM_WebSight_finetuned",
40
+ token=API_TOKEN,
41
+ trust_remote_code=True,
42
+ torch_dtype=torch.bfloat16,
43
+ ).to(DEVICE)
44
+ image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
45
+ BOS_TOKEN = PROCESSOR.tokenizer.bos_token
46
+ BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
47
+
48
+
49
+ def convert_to_rgb(image):
50
+ # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
51
+ # for transparent images. The call to `alpha_composite` handles this case
52
+ if image.mode == "RGB":
53
+ return image
54
+
55
+ image_rgba = image.convert("RGBA")
56
+ background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
57
+ alpha_composite = Image.alpha_composite(background, image_rgba)
58
+ alpha_composite = alpha_composite.convert("RGB")
59
+ return alpha_composite
60
+
61
+ # The processor is the same as the Idefics processor except for the BILINEAR interpolation,
62
+ # so this is a hack in order to redefine ONLY the transform method
63
+ def custom_transform(x):
64
+ x = convert_to_rgb(x)
65
+ x = to_numpy_array(x)
66
+ x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
67
+ x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
68
+ x = PROCESSOR.image_processor.normalize(
69
+ x,
70
+ mean=PROCESSOR.image_processor.image_mean,
71
+ std=PROCESSOR.image_processor.image_std
72
+ )
73
+ x = to_channel_dimension_format(x, ChannelDimension.FIRST)
74
+ x = torch.tensor(x)
75
+ return x
76
+
77
+ inputs = PROCESSOR.tokenizer(
78
+ f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
79
+ return_tensors="pt",
80
+ add_special_tokens=False,
81
+ )
82
+ inputs["pixel_values"] = PROCESSOR.image_processor([image], transform=custom_transform)
83
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
84
+ generated_ids = MODEL.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_length=4096)
85
+ generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
86
+
87
+ print(generated_text)
88
+ ```
89
+
90
+ # Model Details
91
+
92
+ - **Developed by:** Hugging Face
93
+ - **Model type:** Multi-modal model (screenshot of website component to HTML/CSS code)
94
+ - **Language(s) (NLP):** en
95
+ - **License:** see [License section](#license)
96
+ - **Parent Models:** [SigLIP](https://github.com/huggingface/transformers/pull/26522) and [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
97
+ - **Resources for more information:**
98
+ <!-- - [GitHub Repo](https://github.com/huggingface/m4/) -->
99
+ - Websight dataset: [Dataset card](https://huggingface.co/datasets/HuggingFaceM4/Websight)
100
+ - Websight technical report: [Report](https://arxiv.org/abs/2403.09029)
101
+
102
+ # License
103
+
104
+ The model is built on top of two pre-trained models: [SigLIP](https://github.com/huggingface/transformers/pull/26522) and [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), which are delivered under an Apache-2.0 license. As such, users should comply with the licenses of these models.
105
+
106
+ The two pre-trained models are connected to each other with newly initialized parameters that we train. These are not based on any of the two base frozen models forming the composite model. We release the additional weights we trained under an Apache-2.0 license.
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<fake_token_around_image>": 32000,
3
+ "<image>": 32001
4
+ }
config.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "None",
4
+ "additional_vocab_size": 2,
5
+ "alpha_initializer": "zeros",
6
+ "alpha_type": "float",
7
+ "alphas_initializer_range": 0.0,
8
+ "architectures": [
9
+ "VMistralForVisionText2Text"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_vmistral.VMistralConfig",
14
+ "AutoModelForCausalLM": "modeling_vmistral.VMistralForVisionText2Text"
15
+ },
16
+ "bos_token_id": 1,
17
+ "cross_layer_interval": 1,
18
+ "eos_token_id": 2,
19
+ "freeze_lm_head": false,
20
+ "freeze_text_layers": false,
21
+ "freeze_text_module_exceptions": [],
22
+ "freeze_vision_layers": false,
23
+ "freeze_vision_module_exceptions": [],
24
+ "hidden_act": "silu",
25
+ "hidden_size": 4096,
26
+ "image_token_id": 32001,
27
+ "initializer_range": 0.02,
28
+ "intermediate_size": 14336,
29
+ "max_position_embeddings": 32768,
30
+ "model_type": "vmistral",
31
+ "num_attention_heads": 32,
32
+ "num_hidden_layers": 32,
33
+ "num_key_value_heads": 8,
34
+ "pad_token_id": 0,
35
+ "perceiver_config": {
36
+ "resampler_depth": 3,
37
+ "resampler_head_dim": 96,
38
+ "resampler_n_heads": 16,
39
+ "resampler_n_latents": 64,
40
+ "qk_layer_norms_perceiver": true
41
+ },
42
+ "qk_layer_norms": true,
43
+ "rms_norm_eps": 1e-05,
44
+ "rope_theta": 10000.0,
45
+ "sliding_window": 4096,
46
+ "tie_word_embeddings": false,
47
+ "torch_dtype": "bfloat16",
48
+ "transformers_version": "4.34.0.dev0",
49
+ "use_cache": true,
50
+ "use_resampler": true,
51
+ "vision_config": {
52
+ "hidden_size": 1152,
53
+ "image_size": 960,
54
+ "intermediate_size": 4304,
55
+ "model_type": "vmistral",
56
+ "num_attention_heads": 16,
57
+ "num_hidden_layers": 27,
58
+ "patch_size": 14
59
+ },
60
+ "vocab_size": 32000
61
+ }
configuration_vmistral.py ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ VMistral model configuration"""
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+ MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
23
+ "HuggingFaceM4/VLM_WebSight_finetuned": "https://huggingface.co/HuggingFaceM4/VLM_WebSight_finetuned/resolve/main/config.json",
24
+ }
25
+
26
+
27
+ class VMistralVisionConfig(PretrainedConfig):
28
+ r"""
29
+ """
30
+ model_type = "vmistral"
31
+
32
+ def __init__(
33
+ self,
34
+ hidden_size=768,
35
+ intermediate_size=3072,
36
+ num_hidden_layers=12,
37
+ num_attention_heads=12,
38
+ num_channels=3,
39
+ image_size=224,
40
+ patch_size=32,
41
+ hidden_act="gelu_pytorch_tanh",
42
+ layer_norm_eps=1e-6,
43
+ attention_dropout=0.0,
44
+ initializer_range=0.02,
45
+ initializer_factor=1.0,
46
+ _flash_attn_2_enabled=True,
47
+ **kwargs,
48
+ ):
49
+ super().__init__(**kwargs)
50
+
51
+ self.hidden_size = hidden_size
52
+ self.intermediate_size = intermediate_size
53
+ self.num_hidden_layers = num_hidden_layers
54
+ self.num_attention_heads = num_attention_heads
55
+ self.num_channels = num_channels
56
+ self.patch_size = patch_size
57
+ self.image_size = image_size
58
+ self.initializer_range = initializer_range
59
+ self.initializer_factor = initializer_factor
60
+ self.attention_dropout = attention_dropout
61
+ self.layer_norm_eps = layer_norm_eps
62
+ self.hidden_act = hidden_act
63
+ self._flash_attn_2_enabled = _flash_attn_2_enabled
64
+
65
+
66
+ class VMistralPerceiverConfig(PretrainedConfig):
67
+ r"""
68
+ TThis is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
69
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
70
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
71
+
72
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
73
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
74
+
75
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
76
+ documentation from [`PretrainedConfig`] for more information.
77
+
78
+ Args:
79
+ use_resampler (`bool`, *optional*, defaults to `False`):
80
+ Whether or not to use the resampler
81
+ resampler_n_latents (`int`, *optional*, defaults to ):
82
+ Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
83
+ resampler_depth (`int`, *optional*, defaults to 6):
84
+ Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
85
+ resampler_n_heads (`int`, *optional*, defaults to 16):
86
+ Number of heads in each Transformer block (for multi-headed self-attention).
87
+ resampler_head_dim (`int`, *optional*, defaults to 96):
88
+ Dimensionality of each head projection in the Transformer block.
89
+ qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`):
90
+ Whether or not to use qk layer norms in perceiver
91
+ """
92
+ model_type = "vmistral"
93
+
94
+ def __init__(
95
+ self,
96
+ resampler_n_latents=64,
97
+ resampler_depth=6,
98
+ resampler_n_heads=16,
99
+ resampler_head_dim=96,
100
+ qk_layer_norms_perceiver=False,
101
+ **kwargs,
102
+ ):
103
+ self.resampler_n_latents = resampler_n_latents
104
+ self.resampler_depth = resampler_depth
105
+ self.resampler_n_heads = resampler_n_heads
106
+ self.resampler_head_dim = resampler_head_dim
107
+ self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
108
+
109
+ super().__init__(**kwargs)
110
+
111
+
112
+ class VMistralConfig(PretrainedConfig):
113
+ r"""
114
+ This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an
115
+ Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration
116
+ with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1.
117
+
118
+ [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
119
+ [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1)
120
+
121
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
122
+ documentation from [`PretrainedConfig`] for more information.
123
+
124
+ Args:
125
+ additional_vocab_size (`int`, *optional`, defaults to 0):
126
+ Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens
127
+ are always trainable whereas regular vocab tokens can be frozen or not.
128
+ vocab_size (`int`, *optional*, defaults to 32000):
129
+ Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
130
+ `inputs_ids` passed when calling [`MistralModel`]
131
+ hidden_size (`int`, *optional*, defaults to 4096):
132
+ Dimension of the hidden representations.
133
+ intermediate_size (`int`, *optional*, defaults to 14336):
134
+ Dimension of the MLP representations.
135
+ num_hidden_layers (`int`, *optional*, defaults to 32):
136
+ Number of hidden layers in the Transformer encoder.
137
+ num_attention_heads (`int`, *optional*, defaults to 32):
138
+ Number of attention heads for each attention layer in the Transformer encoder.
139
+ num_key_value_heads (`int`, *optional*, defaults to 8):
140
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
141
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
142
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
143
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
144
+ by meanpooling all the original heads within that group. For more details checkout [this
145
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
146
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
147
+ The non-linear activation function (function or string) in the decoder.
148
+ max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
149
+ The maximum sequence length that this model might ever be used with. Mistral's sliding window attention
150
+ allows sequence of up to 4096*32 tokens.
151
+ initializer_range (`float`, *optional*, defaults to 0.02):
152
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
153
+ alpha_initializer (`str`, *optional*, defaults to `"zeros"`):
154
+ Initialization type for the alphas.
155
+ alphas_initializer_range (`float`, *optional*, defaults to 0.0):
156
+ The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross
157
+ Attention.
158
+ alpha_type (`str`, *optional*, defaults to `"float"`):
159
+ Whether the gating alphas should be vectors or single floats.
160
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
161
+ The epsilon used by the rms normalization layers.
162
+ use_cache (`bool`, *optional*, defaults to `True`):
163
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
164
+ relevant if `config.is_decoder=True`.
165
+ pad_token_id (`int`, *optional*):
166
+ The id of the padding token.
167
+ bos_token_id (`int`, *optional*, defaults to 1):
168
+ The id of the "beginning-of-sequence" token.
169
+ eos_token_id (`int`, *optional*, defaults to 2):
170
+ The id of the "end-of-sequence" token.
171
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
172
+ Whether the model's input and output word embeddings should be tied.
173
+ rope_theta (`float`, *optional*, defaults to 10000.0):
174
+ The base period of the RoPE embeddings.
175
+ sliding_window (`int`, *optional*, defaults to 4096):
176
+ Sliding window attention window size. If not specified, will default to `4096`.
177
+ cross_layer_interval (`int`, *optional*, default to 1)
178
+ Interval for cross attention (from text to image) layers.
179
+ qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k
180
+ freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers
181
+ freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`):
182
+ Exceptions to freezing text layers when `freeze_text_layers` is `True`
183
+ freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head
184
+ freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers
185
+ freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`):
186
+ Exceptions to freezing vision layers when `freeze_vision_layers` is `True`
187
+ use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler
188
+ vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict
189
+ perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict
190
+
191
+ Example:
192
+ ```python
193
+ >>> from transformers import MistralModel, MistralConfig
194
+
195
+ >>> # Initializing a Mistral 7B style configuration
196
+ >>> configuration = MistralConfig()
197
+
198
+ >>> # Initializing a model from the Mistral 7B style configuration
199
+ >>> model = MistralModel(configuration)
200
+
201
+ >>> # Accessing the model configuration
202
+ >>> configuration = model.config
203
+ ```"""
204
+ model_type = "vmistral"
205
+ is_composition = False
206
+
207
+ def __init__(
208
+ self,
209
+ additional_vocab_size=0,
210
+ vocab_size=32000,
211
+ hidden_size=4096,
212
+ intermediate_size=14336,
213
+ num_hidden_layers=32,
214
+ num_attention_heads=32,
215
+ num_key_value_heads=8,
216
+ hidden_act="silu",
217
+ max_position_embeddings=4096 * 32,
218
+ initializer_range=0.02,
219
+ alpha_initializer="zeros",
220
+ alphas_initializer_range=0.0,
221
+ alpha_type="float",
222
+ rms_norm_eps=1e-6,
223
+ use_cache=True,
224
+ pad_token_id=0, # None in the original configuration_mistral, we set it to the unk_token_id
225
+ bos_token_id=1,
226
+ eos_token_id=2,
227
+ image_token_id=32_001,
228
+ tie_word_embeddings=False,
229
+ rope_theta=10000.0,
230
+ sliding_window=4096,
231
+ cross_layer_interval=1,
232
+ qk_layer_norms=False,
233
+ freeze_text_layers=True,
234
+ freeze_text_module_exceptions=[],
235
+ freeze_lm_head=False,
236
+ freeze_vision_layers=True,
237
+ freeze_vision_module_exceptions=[],
238
+ attention_dropout=0.0,
239
+ _flash_attn_2_enabled=True,
240
+ use_resampler=False,
241
+ vision_config=None,
242
+ perceiver_config=None,
243
+ **kwargs,
244
+ ):
245
+ self.vocab_size = vocab_size
246
+ self.additional_vocab_size = additional_vocab_size
247
+ self.image_token_id = image_token_id
248
+ self.max_position_embeddings = max_position_embeddings
249
+ self.hidden_size = hidden_size
250
+ self.intermediate_size = intermediate_size
251
+ self.num_hidden_layers = num_hidden_layers
252
+ self.num_attention_heads = num_attention_heads
253
+ self.sliding_window = sliding_window
254
+
255
+ # for backward compatibility
256
+ if num_key_value_heads is None:
257
+ num_key_value_heads = num_attention_heads
258
+
259
+ self.num_key_value_heads = num_key_value_heads
260
+ self.hidden_act = hidden_act
261
+ self.initializer_range = initializer_range
262
+ self.alpha_initializer = alpha_initializer
263
+ self.alphas_initializer_range = alphas_initializer_range
264
+ self.alpha_type = alpha_type
265
+ self.rms_norm_eps = rms_norm_eps
266
+ self.use_cache = use_cache
267
+ self.rope_theta = rope_theta
268
+
269
+ self.cross_layer_interval = cross_layer_interval
270
+ self.qk_layer_norms = qk_layer_norms
271
+ self.freeze_vision_layers = freeze_vision_layers
272
+
273
+ self.freeze_text_layers = freeze_text_layers
274
+ self.freeze_text_module_exceptions = freeze_text_module_exceptions
275
+ self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
276
+ self.freeze_lm_head = freeze_lm_head
277
+
278
+ self.use_resampler = use_resampler
279
+ self._flash_attn_2_enabled = _flash_attn_2_enabled
280
+ self.attention_dropout = attention_dropout
281
+
282
+ if perceiver_config is None:
283
+ self.perceiver_config = VMistralPerceiverConfig()
284
+ elif isinstance(perceiver_config, dict):
285
+ self.perceiver_config = VMistralPerceiverConfig(**perceiver_config)
286
+ elif isinstance(perceiver_config, VMistralPerceiverConfig):
287
+ self.perceiver_config = perceiver_config
288
+
289
+ if vision_config is None:
290
+ self.vision_config = VMistralVisionConfig()
291
+ elif isinstance(vision_config, dict):
292
+ self.vision_config = VMistralVisionConfig(**vision_config)
293
+ elif isinstance(vision_config, VMistralVisionConfig):
294
+ self.vision_config = vision_config
295
+
296
+ super().__init__(
297
+ pad_token_id=pad_token_id,
298
+ bos_token_id=bos_token_id,
299
+ eos_token_id=eos_token_id,
300
+ tie_word_embeddings=tie_word_embeddings,
301
+ **kwargs,
302
+ )
303
+
304
+ # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
305
+ # PretrainedConfig.from_dict first instantiates the class with the config dict and only then
306
+ # updates the config object with `kwargs` from from_pretrained, so during the instantiation
307
+ # of this object many attributes have default values and haven't yet been overridden.
308
+ # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.35.2"
7
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,803 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16416014464
4
+ },
5
+ "weight_map": {
6
+ "lm_head.additional_fc.weight": "model-00004-of-00004.safetensors",
7
+ "lm_head.weight": "model-00004-of-00004.safetensors",
8
+ "model.embed_tokens.additional_embedding.weight": "model-00001-of-00004.safetensors",
9
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
92
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
93
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
95
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
96
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
101
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
102
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
103
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
104
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
110
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
111
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
112
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
113
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
114
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
115
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
116
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
126
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
127
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00004.safetensors",
200
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
201
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
204
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
209
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
210
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
211
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
212
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
213
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
214
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
215
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
216
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
217
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
225
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
226
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
227
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
228
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
229
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
230
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
231
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
232
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
233
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
236
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
239
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
240
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
242
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
243
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
244
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
263
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
264
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
265
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
266
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
267
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
272
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
273
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
274
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
275
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
276
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
277
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
278
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
279
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
280
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
281
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
282
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
283
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
284
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
287
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.modality_projection.act.fc1.weight": "model-00001-of-00004.safetensors",
299
+ "model.modality_projection.act.fc2.weight": "model-00001-of-00004.safetensors",
300
+ "model.modality_projection.fc1.weight": "model-00001-of-00004.safetensors",
301
+ "model.modality_projection.fc2.weight": "model-00001-of-00004.safetensors",
302
+ "model.norm.weight": "model-00004-of-00004.safetensors",
303
+ "model.perceiver_resampler.blocks.0.0.context_layer_norm.bias": "model-00001-of-00004.safetensors",
304
+ "model.perceiver_resampler.blocks.0.0.context_layer_norm.weight": "model-00001-of-00004.safetensors",
305
+ "model.perceiver_resampler.blocks.0.0.k_layer_norm.bias": "model-00001-of-00004.safetensors",
306
+ "model.perceiver_resampler.blocks.0.0.k_layer_norm.weight": "model-00001-of-00004.safetensors",
307
+ "model.perceiver_resampler.blocks.0.0.k_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.perceiver_resampler.blocks.0.0.latents_layer_norm.bias": "model-00001-of-00004.safetensors",
309
+ "model.perceiver_resampler.blocks.0.0.latents_layer_norm.weight": "model-00001-of-00004.safetensors",
310
+ "model.perceiver_resampler.blocks.0.0.output_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.perceiver_resampler.blocks.0.0.q_layer_norm.bias": "model-00001-of-00004.safetensors",
312
+ "model.perceiver_resampler.blocks.0.0.q_layer_norm.weight": "model-00001-of-00004.safetensors",
313
+ "model.perceiver_resampler.blocks.0.0.q_proj.weight": "model-00001-of-00004.safetensors",
314
+ "model.perceiver_resampler.blocks.0.0.v_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.perceiver_resampler.blocks.0.1.c_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.perceiver_resampler.blocks.0.1.fc.weight": "model-00001-of-00004.safetensors",
317
+ "model.perceiver_resampler.blocks.0.1.ln.bias": "model-00001-of-00004.safetensors",
318
+ "model.perceiver_resampler.blocks.0.1.ln.weight": "model-00001-of-00004.safetensors",
319
+ "model.perceiver_resampler.blocks.1.0.context_layer_norm.bias": "model-00001-of-00004.safetensors",
320
+ "model.perceiver_resampler.blocks.1.0.context_layer_norm.weight": "model-00001-of-00004.safetensors",
321
+ "model.perceiver_resampler.blocks.1.0.k_layer_norm.bias": "model-00001-of-00004.safetensors",
322
+ "model.perceiver_resampler.blocks.1.0.k_layer_norm.weight": "model-00001-of-00004.safetensors",
323
+ "model.perceiver_resampler.blocks.1.0.k_proj.weight": "model-00001-of-00004.safetensors",
324
+ "model.perceiver_resampler.blocks.1.0.latents_layer_norm.bias": "model-00001-of-00004.safetensors",
325
+ "model.perceiver_resampler.blocks.1.0.latents_layer_norm.weight": "model-00001-of-00004.safetensors",
326
+ "model.perceiver_resampler.blocks.1.0.output_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.perceiver_resampler.blocks.1.0.q_layer_norm.bias": "model-00001-of-00004.safetensors",
328
+ "model.perceiver_resampler.blocks.1.0.q_layer_norm.weight": "model-00001-of-00004.safetensors",
329
+ "model.perceiver_resampler.blocks.1.0.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.perceiver_resampler.blocks.1.0.v_proj.weight": "model-00001-of-00004.safetensors",
331
+ "model.perceiver_resampler.blocks.1.1.c_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.perceiver_resampler.blocks.1.1.fc.weight": "model-00001-of-00004.safetensors",
333
+ "model.perceiver_resampler.blocks.1.1.ln.bias": "model-00001-of-00004.safetensors",
334
+ "model.perceiver_resampler.blocks.1.1.ln.weight": "model-00001-of-00004.safetensors",
335
+ "model.perceiver_resampler.blocks.2.0.context_layer_norm.bias": "model-00001-of-00004.safetensors",
336
+ "model.perceiver_resampler.blocks.2.0.context_layer_norm.weight": "model-00001-of-00004.safetensors",
337
+ "model.perceiver_resampler.blocks.2.0.k_layer_norm.bias": "model-00001-of-00004.safetensors",
338
+ "model.perceiver_resampler.blocks.2.0.k_layer_norm.weight": "model-00001-of-00004.safetensors",
339
+ "model.perceiver_resampler.blocks.2.0.k_proj.weight": "model-00001-of-00004.safetensors",
340
+ "model.perceiver_resampler.blocks.2.0.latents_layer_norm.bias": "model-00001-of-00004.safetensors",
341
+ "model.perceiver_resampler.blocks.2.0.latents_layer_norm.weight": "model-00001-of-00004.safetensors",
342
+ "model.perceiver_resampler.blocks.2.0.output_proj.weight": "model-00001-of-00004.safetensors",
343
+ "model.perceiver_resampler.blocks.2.0.q_layer_norm.bias": "model-00001-of-00004.safetensors",
344
+ "model.perceiver_resampler.blocks.2.0.q_layer_norm.weight": "model-00001-of-00004.safetensors",
345
+ "model.perceiver_resampler.blocks.2.0.q_proj.weight": "model-00001-of-00004.safetensors",
346
+ "model.perceiver_resampler.blocks.2.0.v_proj.weight": "model-00001-of-00004.safetensors",
347
+ "model.perceiver_resampler.blocks.2.1.c_proj.weight": "model-00001-of-00004.safetensors",
348
+ "model.perceiver_resampler.blocks.2.1.fc.weight": "model-00001-of-00004.safetensors",
349
+ "model.perceiver_resampler.blocks.2.1.ln.bias": "model-00001-of-00004.safetensors",
350
+ "model.perceiver_resampler.blocks.2.1.ln.weight": "model-00001-of-00004.safetensors",
351
+ "model.perceiver_resampler.latents": "model-00001-of-00004.safetensors",
352
+ "model.perceiver_resampler.layer_norm.bias": "model-00001-of-00004.safetensors",
353
+ "model.perceiver_resampler.layer_norm.weight": "model-00001-of-00004.safetensors",
354
+ "model.vision_model.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
355
+ "model.vision_model.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
356
+ "model.vision_model.vision_model.embeddings.position_embedding.weight": "model-00001-of-00004.safetensors",
357
+ "model.vision_model.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00004.safetensors",
358
+ "model.vision_model.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00004.safetensors",
359
+ "model.vision_model.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00004.safetensors",
360
+ "model.vision_model.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00004.safetensors",
361
+ "model.vision_model.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
+ "model.vision_model.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
+ "model.vision_model.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
+ "model.vision_model.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
+ "model.vision_model.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
366
+ "model.vision_model.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
367
+ "model.vision_model.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
368
+ "model.vision_model.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
369
+ "model.vision_model.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
370
+ "model.vision_model.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
371
+ "model.vision_model.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
372
+ "model.vision_model.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
373
+ "model.vision_model.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00004.safetensors",
374
+ "model.vision_model.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00004.safetensors",
375
+ "model.vision_model.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00004.safetensors",
376
+ "model.vision_model.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00004.safetensors",
377
+ "model.vision_model.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
378
+ "model.vision_model.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
379
+ "model.vision_model.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
380
+ "model.vision_model.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
381
+ "model.vision_model.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
382
+ "model.vision_model.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
383
+ "model.vision_model.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
384
+ "model.vision_model.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
385
+ "model.vision_model.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
386
+ "model.vision_model.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
387
+ "model.vision_model.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
388
+ "model.vision_model.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
389
+ "model.vision_model.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00004.safetensors",
390
+ "model.vision_model.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00004.safetensors",
391
+ "model.vision_model.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00004.safetensors",
392
+ "model.vision_model.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00004.safetensors",
393
+ "model.vision_model.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
394
+ "model.vision_model.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
395
+ "model.vision_model.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
396
+ "model.vision_model.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
397
+ "model.vision_model.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
398
+ "model.vision_model.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
399
+ "model.vision_model.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
400
+ "model.vision_model.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
401
+ "model.vision_model.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
402
+ "model.vision_model.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
403
+ "model.vision_model.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
404
+ "model.vision_model.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
405
+ "model.vision_model.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00004.safetensors",
406
+ "model.vision_model.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00004.safetensors",
407
+ "model.vision_model.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00004.safetensors",
408
+ "model.vision_model.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00004.safetensors",
409
+ "model.vision_model.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
410
+ "model.vision_model.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
411
+ "model.vision_model.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
412
+ "model.vision_model.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
413
+ "model.vision_model.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
414
+ "model.vision_model.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
415
+ "model.vision_model.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
416
+ "model.vision_model.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
417
+ "model.vision_model.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
418
+ "model.vision_model.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
419
+ "model.vision_model.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
420
+ "model.vision_model.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
421
+ "model.vision_model.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00004.safetensors",
422
+ "model.vision_model.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00004.safetensors",
423
+ "model.vision_model.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00004.safetensors",
424
+ "model.vision_model.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00004.safetensors",
425
+ "model.vision_model.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
426
+ "model.vision_model.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
427
+ "model.vision_model.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
428
+ "model.vision_model.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
429
+ "model.vision_model.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
430
+ "model.vision_model.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
431
+ "model.vision_model.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
432
+ "model.vision_model.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
433
+ "model.vision_model.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
434
+ "model.vision_model.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
435
+ "model.vision_model.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
436
+ "model.vision_model.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
437
+ "model.vision_model.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00004.safetensors",
438
+ "model.vision_model.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00004.safetensors",
439
+ "model.vision_model.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00004.safetensors",
440
+ "model.vision_model.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00004.safetensors",
441
+ "model.vision_model.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
442
+ "model.vision_model.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
443
+ "model.vision_model.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
444
+ "model.vision_model.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
445
+ "model.vision_model.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
446
+ "model.vision_model.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
447
+ "model.vision_model.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
448
+ "model.vision_model.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
449
+ "model.vision_model.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
450
+ "model.vision_model.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
451
+ "model.vision_model.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
452
+ "model.vision_model.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
453
+ "model.vision_model.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00004.safetensors",
454
+ "model.vision_model.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00004.safetensors",
455
+ "model.vision_model.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00004.safetensors",
456
+ "model.vision_model.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00004.safetensors",
457
+ "model.vision_model.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
458
+ "model.vision_model.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
459
+ "model.vision_model.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
460
+ "model.vision_model.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
461
+ "model.vision_model.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
462
+ "model.vision_model.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
463
+ "model.vision_model.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
464
+ "model.vision_model.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
465
+ "model.vision_model.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
466
+ "model.vision_model.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
467
+ "model.vision_model.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
468
+ "model.vision_model.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
469
+ "model.vision_model.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00004.safetensors",
470
+ "model.vision_model.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00004.safetensors",
471
+ "model.vision_model.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00004.safetensors",
472
+ "model.vision_model.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00004.safetensors",
473
+ "model.vision_model.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
474
+ "model.vision_model.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
475
+ "model.vision_model.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
476
+ "model.vision_model.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
477
+ "model.vision_model.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
478
+ "model.vision_model.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
479
+ "model.vision_model.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
480
+ "model.vision_model.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
481
+ "model.vision_model.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
482
+ "model.vision_model.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
483
+ "model.vision_model.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
484
+ "model.vision_model.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
485
+ "model.vision_model.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00004.safetensors",
486
+ "model.vision_model.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00004.safetensors",
487
+ "model.vision_model.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00004.safetensors",
488
+ "model.vision_model.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00004.safetensors",
489
+ "model.vision_model.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
490
+ "model.vision_model.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
491
+ "model.vision_model.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
492
+ "model.vision_model.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
493
+ "model.vision_model.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
494
+ "model.vision_model.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
495
+ "model.vision_model.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
496
+ "model.vision_model.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
497
+ "model.vision_model.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
498
+ "model.vision_model.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
499
+ "model.vision_model.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
500
+ "model.vision_model.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
501
+ "model.vision_model.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00004.safetensors",
502
+ "model.vision_model.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00004.safetensors",
503
+ "model.vision_model.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00004.safetensors",
504
+ "model.vision_model.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00004.safetensors",
505
+ "model.vision_model.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
506
+ "model.vision_model.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
507
+ "model.vision_model.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
508
+ "model.vision_model.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
509
+ "model.vision_model.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
510
+ "model.vision_model.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
511
+ "model.vision_model.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
512
+ "model.vision_model.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
513
+ "model.vision_model.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
514
+ "model.vision_model.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
515
+ "model.vision_model.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
516
+ "model.vision_model.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
517
+ "model.vision_model.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00004.safetensors",
518
+ "model.vision_model.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00004.safetensors",
519
+ "model.vision_model.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00004.safetensors",
520
+ "model.vision_model.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00004.safetensors",
521
+ "model.vision_model.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
522
+ "model.vision_model.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
523
+ "model.vision_model.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
524
+ "model.vision_model.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
525
+ "model.vision_model.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
526
+ "model.vision_model.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
527
+ "model.vision_model.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
528
+ "model.vision_model.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
529
+ "model.vision_model.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
530
+ "model.vision_model.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
531
+ "model.vision_model.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
532
+ "model.vision_model.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
533
+ "model.vision_model.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00004.safetensors",
534
+ "model.vision_model.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00004.safetensors",
535
+ "model.vision_model.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00004.safetensors",
536
+ "model.vision_model.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00004.safetensors",
537
+ "model.vision_model.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
538
+ "model.vision_model.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
539
+ "model.vision_model.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
540
+ "model.vision_model.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
541
+ "model.vision_model.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
542
+ "model.vision_model.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
543
+ "model.vision_model.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
544
+ "model.vision_model.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
545
+ "model.vision_model.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
546
+ "model.vision_model.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
547
+ "model.vision_model.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
548
+ "model.vision_model.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
549
+ "model.vision_model.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00004.safetensors",
550
+ "model.vision_model.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00004.safetensors",
551
+ "model.vision_model.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00004.safetensors",
552
+ "model.vision_model.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00004.safetensors",
553
+ "model.vision_model.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
554
+ "model.vision_model.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
555
+ "model.vision_model.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
556
+ "model.vision_model.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
557
+ "model.vision_model.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
558
+ "model.vision_model.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
559
+ "model.vision_model.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
560
+ "model.vision_model.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
561
+ "model.vision_model.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
562
+ "model.vision_model.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
563
+ "model.vision_model.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
564
+ "model.vision_model.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
565
+ "model.vision_model.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00004.safetensors",
566
+ "model.vision_model.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00004.safetensors",
567
+ "model.vision_model.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00004.safetensors",
568
+ "model.vision_model.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00004.safetensors",
569
+ "model.vision_model.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
570
+ "model.vision_model.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
571
+ "model.vision_model.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
572
+ "model.vision_model.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
573
+ "model.vision_model.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
574
+ "model.vision_model.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
575
+ "model.vision_model.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
576
+ "model.vision_model.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
577
+ "model.vision_model.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
578
+ "model.vision_model.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
579
+ "model.vision_model.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
580
+ "model.vision_model.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
581
+ "model.vision_model.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00004.safetensors",
582
+ "model.vision_model.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00004.safetensors",
583
+ "model.vision_model.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00004.safetensors",
584
+ "model.vision_model.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00004.safetensors",
585
+ "model.vision_model.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
586
+ "model.vision_model.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
587
+ "model.vision_model.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
588
+ "model.vision_model.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
589
+ "model.vision_model.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
590
+ "model.vision_model.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
591
+ "model.vision_model.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
592
+ "model.vision_model.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
593
+ "model.vision_model.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
594
+ "model.vision_model.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
595
+ "model.vision_model.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
596
+ "model.vision_model.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
597
+ "model.vision_model.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00004.safetensors",
598
+ "model.vision_model.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00004.safetensors",
599
+ "model.vision_model.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00004.safetensors",
600
+ "model.vision_model.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00004.safetensors",
601
+ "model.vision_model.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
602
+ "model.vision_model.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
603
+ "model.vision_model.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
604
+ "model.vision_model.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
605
+ "model.vision_model.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
606
+ "model.vision_model.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
607
+ "model.vision_model.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
608
+ "model.vision_model.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
609
+ "model.vision_model.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
610
+ "model.vision_model.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
611
+ "model.vision_model.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
612
+ "model.vision_model.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
613
+ "model.vision_model.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00004.safetensors",
614
+ "model.vision_model.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00004.safetensors",
615
+ "model.vision_model.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00004.safetensors",
616
+ "model.vision_model.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00004.safetensors",
617
+ "model.vision_model.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
618
+ "model.vision_model.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
619
+ "model.vision_model.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
620
+ "model.vision_model.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
621
+ "model.vision_model.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
622
+ "model.vision_model.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
623
+ "model.vision_model.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
624
+ "model.vision_model.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
625
+ "model.vision_model.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
626
+ "model.vision_model.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
627
+ "model.vision_model.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
628
+ "model.vision_model.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
629
+ "model.vision_model.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00004.safetensors",
630
+ "model.vision_model.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00004.safetensors",
631
+ "model.vision_model.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00004.safetensors",
632
+ "model.vision_model.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00004.safetensors",
633
+ "model.vision_model.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
634
+ "model.vision_model.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
635
+ "model.vision_model.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
636
+ "model.vision_model.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
637
+ "model.vision_model.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
638
+ "model.vision_model.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
639
+ "model.vision_model.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
640
+ "model.vision_model.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
641
+ "model.vision_model.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
642
+ "model.vision_model.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
643
+ "model.vision_model.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
644
+ "model.vision_model.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
645
+ "model.vision_model.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00004.safetensors",
646
+ "model.vision_model.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00004.safetensors",
647
+ "model.vision_model.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00004.safetensors",
648
+ "model.vision_model.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00004.safetensors",
649
+ "model.vision_model.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
650
+ "model.vision_model.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
651
+ "model.vision_model.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
652
+ "model.vision_model.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
653
+ "model.vision_model.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
654
+ "model.vision_model.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
655
+ "model.vision_model.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
656
+ "model.vision_model.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
657
+ "model.vision_model.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
658
+ "model.vision_model.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
659
+ "model.vision_model.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
660
+ "model.vision_model.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
661
+ "model.vision_model.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00004.safetensors",
662
+ "model.vision_model.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00004.safetensors",
663
+ "model.vision_model.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00004.safetensors",
664
+ "model.vision_model.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00004.safetensors",
665
+ "model.vision_model.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
666
+ "model.vision_model.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
667
+ "model.vision_model.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
668
+ "model.vision_model.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
669
+ "model.vision_model.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
670
+ "model.vision_model.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
671
+ "model.vision_model.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
672
+ "model.vision_model.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
673
+ "model.vision_model.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
674
+ "model.vision_model.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
675
+ "model.vision_model.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
676
+ "model.vision_model.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
677
+ "model.vision_model.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00004.safetensors",
678
+ "model.vision_model.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00004.safetensors",
679
+ "model.vision_model.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00004.safetensors",
680
+ "model.vision_model.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00004.safetensors",
681
+ "model.vision_model.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
682
+ "model.vision_model.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
683
+ "model.vision_model.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
684
+ "model.vision_model.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
685
+ "model.vision_model.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
686
+ "model.vision_model.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
687
+ "model.vision_model.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
688
+ "model.vision_model.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
689
+ "model.vision_model.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
690
+ "model.vision_model.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
691
+ "model.vision_model.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
692
+ "model.vision_model.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
693
+ "model.vision_model.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00004.safetensors",
694
+ "model.vision_model.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00004.safetensors",
695
+ "model.vision_model.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00004.safetensors",
696
+ "model.vision_model.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00004.safetensors",
697
+ "model.vision_model.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
698
+ "model.vision_model.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
699
+ "model.vision_model.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
700
+ "model.vision_model.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
701
+ "model.vision_model.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
702
+ "model.vision_model.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
703
+ "model.vision_model.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
704
+ "model.vision_model.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
705
+ "model.vision_model.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
706
+ "model.vision_model.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
707
+ "model.vision_model.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
708
+ "model.vision_model.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
709
+ "model.vision_model.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00004.safetensors",
710
+ "model.vision_model.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00004.safetensors",
711
+ "model.vision_model.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00004.safetensors",
712
+ "model.vision_model.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00004.safetensors",
713
+ "model.vision_model.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
714
+ "model.vision_model.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
715
+ "model.vision_model.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
716
+ "model.vision_model.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
717
+ "model.vision_model.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
718
+ "model.vision_model.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
719
+ "model.vision_model.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
720
+ "model.vision_model.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
721
+ "model.vision_model.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
722
+ "model.vision_model.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
723
+ "model.vision_model.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
724
+ "model.vision_model.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
725
+ "model.vision_model.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00004.safetensors",
726
+ "model.vision_model.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00004.safetensors",
727
+ "model.vision_model.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00004.safetensors",
728
+ "model.vision_model.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00004.safetensors",
729
+ "model.vision_model.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
730
+ "model.vision_model.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
731
+ "model.vision_model.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
732
+ "model.vision_model.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
733
+ "model.vision_model.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
734
+ "model.vision_model.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
735
+ "model.vision_model.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
736
+ "model.vision_model.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
737
+ "model.vision_model.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
738
+ "model.vision_model.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
739
+ "model.vision_model.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
740
+ "model.vision_model.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
741
+ "model.vision_model.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00004.safetensors",
742
+ "model.vision_model.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00004.safetensors",
743
+ "model.vision_model.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00004.safetensors",
744
+ "model.vision_model.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00004.safetensors",
745
+ "model.vision_model.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
746
+ "model.vision_model.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
747
+ "model.vision_model.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
748
+ "model.vision_model.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
749
+ "model.vision_model.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
750
+ "model.vision_model.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
751
+ "model.vision_model.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
752
+ "model.vision_model.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
753
+ "model.vision_model.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
754
+ "model.vision_model.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
755
+ "model.vision_model.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
756
+ "model.vision_model.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
757
+ "model.vision_model.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00004.safetensors",
758
+ "model.vision_model.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00004.safetensors",
759
+ "model.vision_model.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00004.safetensors",
760
+ "model.vision_model.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00004.safetensors",
761
+ "model.vision_model.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
762
+ "model.vision_model.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
763
+ "model.vision_model.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
764
+ "model.vision_model.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
765
+ "model.vision_model.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
766
+ "model.vision_model.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
767
+ "model.vision_model.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
768
+ "model.vision_model.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
769
+ "model.vision_model.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
770
+ "model.vision_model.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
771
+ "model.vision_model.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
772
+ "model.vision_model.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
773
+ "model.vision_model.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00004.safetensors",
774
+ "model.vision_model.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00004.safetensors",
775
+ "model.vision_model.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00004.safetensors",
776
+ "model.vision_model.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00004.safetensors",
777
+ "model.vision_model.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
778
+ "model.vision_model.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
779
+ "model.vision_model.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
780
+ "model.vision_model.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
781
+ "model.vision_model.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
782
+ "model.vision_model.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
783
+ "model.vision_model.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00004.safetensors",
784
+ "model.vision_model.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00004.safetensors",
785
+ "model.vision_model.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
786
+ "model.vision_model.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
787
+ "model.vision_model.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
788
+ "model.vision_model.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
789
+ "model.vision_model.vision_model.head.attention.in_proj_bias": "model-00001-of-00004.safetensors",
790
+ "model.vision_model.vision_model.head.attention.in_proj_weight": "model-00001-of-00004.safetensors",
791
+ "model.vision_model.vision_model.head.attention.out_proj.bias": "model-00001-of-00004.safetensors",
792
+ "model.vision_model.vision_model.head.attention.out_proj.weight": "model-00001-of-00004.safetensors",
793
+ "model.vision_model.vision_model.head.layernorm.bias": "model-00001-of-00004.safetensors",
794
+ "model.vision_model.vision_model.head.layernorm.weight": "model-00001-of-00004.safetensors",
795
+ "model.vision_model.vision_model.head.mlp.fc1.bias": "model-00001-of-00004.safetensors",
796
+ "model.vision_model.vision_model.head.mlp.fc1.weight": "model-00001-of-00004.safetensors",
797
+ "model.vision_model.vision_model.head.mlp.fc2.bias": "model-00001-of-00004.safetensors",
798
+ "model.vision_model.vision_model.head.mlp.fc2.weight": "model-00001-of-00004.safetensors",
799
+ "model.vision_model.vision_model.head.probe": "model-00001-of-00004.safetensors",
800
+ "model.vision_model.vision_model.post_layernorm.bias": "model-00001-of-00004.safetensors",
801
+ "model.vision_model.vision_model.post_layernorm.weight": "model-00001-of-00004.safetensors"
802
+ }
803
+ }
modeling_vmistral.py ADDED
@@ -0,0 +1,1764 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch VMistral model."""
21
+ from dataclasses import dataclass
22
+ import inspect
23
+ import math
24
+ import warnings
25
+ from typing import List, Optional, Tuple, Union
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from torch import nn
31
+ from torch.nn import CrossEntropyLoss
32
+ from transformers.activations import ACT2FN
33
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
34
+ from transformers.utils import (
35
+ add_start_docstrings,
36
+ add_start_docstrings_to_model_forward,
37
+ is_flash_attn_2_available,
38
+ replace_return_docstrings,
39
+ )
40
+
41
+ from einops import rearrange, repeat
42
+ from transformers import PreTrainedModel
43
+ from transformers.utils import logging
44
+ from transformers.modeling_outputs import ModelOutput
45
+
46
+ from .configuration_vmistral import VMistralConfig
47
+ from .vision import SiglipVisionModel
48
+
49
+
50
+ if is_flash_attn_2_available():
51
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
52
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
53
+
54
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
55
+
56
+ logger = logging.get_logger(__name__)
57
+
58
+ _CONFIG_FOR_DOC = "VMistralConfig"
59
+
60
+ VMistral_PRETRAINED_MODEL_ARCHIVE_LIST = [
61
+ "HuggingFaceM4/VLM_WebSight_finetuned"
62
+ ]
63
+
64
+ @dataclass
65
+ class VMistralBaseModelOutputWithPast(ModelOutput):
66
+ """
67
+ Base class for VMistral model's outputs that may also contain a past key/values (to speed up sequential decoding).
68
+
69
+ Args:
70
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
71
+ Sequence of hidden-states at the output of the last layer of the model.
72
+
73
+ If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
74
+ hidden_size)` is output.
75
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
76
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
77
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
78
+ `config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
79
+ encoder_sequence_length, embed_size_per_head)`.
80
+
81
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
82
+ `config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
83
+ input) to speed up sequential decoding.
84
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
85
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
86
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
87
+
88
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
89
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
90
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
91
+ sequence_length)`.
92
+
93
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
94
+ heads.
95
+ image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
96
+ Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
97
+ sequence_length, hidden_size)`.
98
+
99
+ image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
100
+ """
101
+
102
+ last_hidden_state: torch.FloatTensor = None
103
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
104
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
105
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
106
+ image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
107
+
108
+
109
+ @dataclass
110
+ class VMistralCausalLMOutputWithPast(ModelOutput):
111
+ """
112
+ Base class for VMistral causal language model (or autoregressive) outputs.
113
+
114
+ Args:
115
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
116
+ Language modeling loss (for next-token prediction).
117
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
118
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
119
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
120
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
121
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
122
+
123
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
124
+ `past_key_values` input) to speed up sequential decoding.
125
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
126
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
127
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
128
+
129
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
130
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
131
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
132
+ sequence_length)`.
133
+
134
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
135
+ heads.
136
+ image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
137
+ Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
138
+ sequence_length, hidden_size)`.
139
+
140
+ image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
141
+ """
142
+
143
+ loss: Optional[torch.FloatTensor] = None
144
+ logits: torch.FloatTensor = None
145
+ past_key_values: Optional[List[torch.FloatTensor]] = None
146
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
147
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
148
+ image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
149
+
150
+
151
+ def expand_inputs_for_generation(
152
+ input_ids,
153
+ expand_size=1,
154
+ is_encoder_decoder=False,
155
+ attention_mask=None,
156
+ encoder_outputs=None,
157
+ **model_kwargs,
158
+ ):
159
+ expanded_return_idx = (
160
+ torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1, expand_size).view(-1).to(input_ids.device)
161
+ )
162
+ input_ids = input_ids.index_select(0, expanded_return_idx)
163
+ model_kwargs["pixel_values"] = model_kwargs.get("pixel_values", None)
164
+ model_kwargs["image_hidden_states"] = model_kwargs.get("image_hidden_states", None)
165
+
166
+ if "token_type_ids" in model_kwargs:
167
+ token_type_ids = model_kwargs["token_type_ids"]
168
+ model_kwargs["token_type_ids"] = token_type_ids.index_select(0, expanded_return_idx)
169
+
170
+ if attention_mask is not None:
171
+ model_kwargs["attention_mask"] = attention_mask.index_select(0, expanded_return_idx)
172
+
173
+ if model_kwargs["pixel_values"] is not None:
174
+ model_kwargs["pixel_values"] = model_kwargs["pixel_values"].index_select(0, expanded_return_idx)
175
+
176
+ elif model_kwargs["image_hidden_states"] is not None:
177
+ model_kwargs["image_hidden_states"] = model_kwargs["image_hidden_states"].index_select(0, expanded_return_idx)
178
+
179
+ return input_ids, model_kwargs
180
+
181
+
182
+ def update_model_kwargs_for_generation(outputs, model_kwargs):
183
+ # must have this key set to at least None
184
+ if "past_key_values" in outputs:
185
+ model_kwargs["past_key_values"] = outputs.past_key_values
186
+ else:
187
+ model_kwargs["past_key_values"] = None
188
+
189
+ # update token_type_ids with last value
190
+ if "token_type_ids" in model_kwargs:
191
+ token_type_ids = model_kwargs["token_type_ids"]
192
+ model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
193
+
194
+ # update attention masks
195
+ if "attention_mask" in model_kwargs:
196
+ attention_mask = model_kwargs["attention_mask"]
197
+ model_kwargs["attention_mask"] = torch.cat(
198
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
199
+ )
200
+
201
+ # Get the precomputed image_hidden_states
202
+ model_kwargs["image_hidden_states"] = outputs.image_hidden_states
203
+
204
+ return model_kwargs
205
+
206
+
207
+ def prepare_inputs_for_generation(input_ids, past_key_values=None, **kwargs):
208
+ token_type_ids = kwargs.get("token_type_ids", None)
209
+ # only last token for inputs_ids if past is defined in kwargs
210
+ if past_key_values:
211
+ input_ids = input_ids[:, -1].unsqueeze(-1)
212
+ if token_type_ids is not None:
213
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
214
+
215
+ attention_mask = kwargs.get("attention_mask", None)
216
+ position_ids = kwargs.get("position_ids", None)
217
+
218
+ if attention_mask is not None and position_ids is None:
219
+ # create position_ids on the fly for batch generation
220
+ position_ids = attention_mask.long().cumsum(-1) - 1
221
+ position_ids.masked_fill_(attention_mask == 0, 1)
222
+ if past_key_values:
223
+ position_ids = position_ids[:, -1].unsqueeze(-1)
224
+
225
+ pixel_values = kwargs.get("pixel_values", None)
226
+ image_hidden_states = kwargs.get("image_hidden_states", None)
227
+
228
+ return {
229
+ "input_ids": input_ids,
230
+ "past_key_values": past_key_values,
231
+ "use_cache": kwargs.get("use_cache"),
232
+ "position_ids": position_ids,
233
+ "attention_mask": attention_mask,
234
+ "token_type_ids": token_type_ids,
235
+ "pixel_values": pixel_values,
236
+ "image_hidden_states": image_hidden_states,
237
+ }
238
+
239
+
240
+ def freeze_model(model, module_exceptions=[]):
241
+ mapping = {
242
+ "LayerNorm": nn.LayerNorm,
243
+ "Linear": nn.Linear,
244
+ "Embedding": nn.Embedding,
245
+ }
246
+ module_exceptions_mapped = [mapping[m] for m in module_exceptions]
247
+ for module in model.modules():
248
+ if module_exceptions and any([isinstance(module, t) for t in module_exceptions_mapped]):
249
+ module.requires_grad_(True) # Explicitly setting it to true to avoid any mistakes
250
+ else:
251
+ module.requires_grad_(False)
252
+ return model
253
+
254
+
255
+ class DecoupledEmbedding(nn.Embedding):
256
+ # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
257
+ """
258
+ Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings.
259
+ In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained.
260
+ If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
261
+ """
262
+
263
+ def __init__(
264
+ self,
265
+ num_embeddings,
266
+ num_additional_embeddings,
267
+ embedding_dim,
268
+ partially_freeze=False,
269
+ device=None,
270
+ dtype=None,
271
+ padding_idx=None,
272
+ **kwargs,
273
+ ) -> None:
274
+ """
275
+ num_additional_embeddings: int. Number of additional embeddings. Only useful when you `partially_freeze=True`.
276
+ partially_freeze: bool. If True, the regular `weight` will be frozen. `additional_weight` is never frozen.
277
+
278
+ Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these.
279
+ """
280
+ if padding_idx is not None and padding_idx > num_embeddings:
281
+ raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}")
282
+ super().__init__(
283
+ num_embeddings=num_embeddings,
284
+ embedding_dim=embedding_dim,
285
+ device=device,
286
+ dtype=dtype,
287
+ padding_idx=padding_idx,
288
+ **kwargs,
289
+ )
290
+ self.num_embeddings = num_embeddings
291
+ self.padding_idx = padding_idx
292
+ self.num_additional_embeddings = num_additional_embeddings
293
+ self.partially_freeze = partially_freeze
294
+
295
+ if partially_freeze:
296
+ self.weight.requires_grad_(False)
297
+
298
+ if self.num_additional_embeddings > 0:
299
+ self.additional_embedding = nn.Embedding(
300
+ num_embeddings=self.num_additional_embeddings,
301
+ embedding_dim=embedding_dim,
302
+ device=device,
303
+ dtype=dtype,
304
+ )
305
+
306
+ def forward(self, input_ids):
307
+ """
308
+ we have 2 embeddings, with different indices - one pretrained self.weight and another
309
+ self.additional_embedding.weight that is being trained.
310
+
311
+ in order to make a lookup of the input ids, we:
312
+ 1. find out the indices of the entries belonging to the 2nd embedding
313
+ 2. extract those values while subtracting the size of the first embedding (num_embeddings),
314
+ since the 2nd embedding starts from 0 and not num_embeddings
315
+ 3. perform the 2nd embedding lookup
316
+ 4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
317
+ 5. perform the 1st embedding lookup
318
+ 6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
319
+
320
+ note: for the 1st embedding lookup we could have looked up only the low indices and not do
321
+ the padding, but then we have to create a new tensor and populate it with 2 tensors that are
322
+ spread out across various indices - i.e. not a simple concat - I haven't benchmarked the
323
+ complex case if it's any faster, given that seqlens are usually relatively short it's
324
+ probably not faster or if faster not by much - but might be a good idea to measure.
325
+
326
+ """
327
+ if self.num_additional_embeddings == 0:
328
+ return self.additional_embedding(input_ids)
329
+
330
+ # Clone so that we don't modify the original input_ids later on
331
+ input_ids = input_ids.clone()
332
+ additional_vocab_indices = torch.where(input_ids >= self.num_embeddings)
333
+ input_ids_additional_vocab = input_ids[additional_vocab_indices]
334
+ additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings)
335
+
336
+ # for successful lookup replace input_ids with 0, the results of these will be discarded anyway
337
+ input_ids[additional_vocab_indices] = 0
338
+ full_vector = F.embedding(input_ids, self.weight)
339
+
340
+ # overwrite the records with high indices
341
+ full_vector[additional_vocab_indices] = additional_embeddings
342
+
343
+ return full_vector
344
+
345
+ def extra_repr(self) -> str:
346
+ return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
347
+ self.num_embeddings,
348
+ self.num_additional_embeddings,
349
+ self.embedding_dim,
350
+ self.partially_freeze,
351
+ )
352
+
353
+ class DecoupledLinear(nn.Linear):
354
+ # Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html#Linear
355
+ """
356
+ Implements a decoupling of parameters to allow freezing (or not) a subset of the parameters.
357
+ In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `out_additional_features` > 0, then it will create `out_additional_features * in_features` additional parameters that are always trained.
358
+ If `out_additional_features=0`, then the module defaults back to the regular behavior of `nn.Linear`.
359
+ """
360
+
361
+ def __init__(
362
+ self,
363
+ in_features: int,
364
+ out_features: int,
365
+ out_additional_features: int = 0,
366
+ bias: bool = True,
367
+ partially_freeze: bool = True,
368
+ device=None,
369
+ dtype=None,
370
+ ) -> None:
371
+ """
372
+ out_additional_features: int. Number of additional trainable dimensions. Only makes sense when `partially_freeze=True`.
373
+ partially_freeze: bool. If True, the regular `weight` will be frozen and extra parameters (if any) will be trainable. If False, default to the regular behavior of nn.Linear.
374
+ """
375
+ super().__init__(in_features, out_features, bias, device, dtype)
376
+ self.out_additional_features = out_additional_features
377
+ self.partially_freeze = partially_freeze
378
+
379
+ self.in_features = in_features
380
+ self.out_features = out_features
381
+
382
+ if partially_freeze:
383
+ self.weight.requires_grad_(False)
384
+ if bias:
385
+ self.bias.requires_grad_(False)
386
+
387
+ if out_additional_features > 0:
388
+ self.additional_fc = nn.Linear(
389
+ in_features=in_features,
390
+ out_features=out_additional_features,
391
+ bias=bias,
392
+ device=device,
393
+ dtype=dtype,
394
+ )
395
+
396
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
397
+ output = F.linear(input, self.weight, self.bias)
398
+
399
+ if self.out_additional_features > 0:
400
+ additional_features = self.additional_fc(input)
401
+ output = torch.cat((output, additional_features), -1)
402
+
403
+ return output
404
+
405
+ def extra_repr(self) -> str:
406
+ """Overwriting `nn.Linear.extra_repr` to include new parameters."""
407
+ return "in_features={}, out_features={}, out_additional_features={}, bias={}, partially_freeze={}".format(
408
+ self.in_features,
409
+ self.out_features,
410
+ self.out_additional_features,
411
+ self.bias is not None,
412
+ self.partially_freeze,
413
+ )
414
+
415
+ class SwiGLU(nn.Module):
416
+ def __init__(self, embed_dim) -> None:
417
+ super().__init__()
418
+ self.fc1 = nn.Linear(embed_dim, embed_dim, bias=False)
419
+ self.fc2 = nn.Linear(embed_dim, embed_dim, bias=False)
420
+
421
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
422
+ x_1 = self.fc1(x)
423
+ x_1 = torch.mul(x_1, torch.sigmoid(x_1))
424
+ x_2 = self.fc2(x)
425
+ x = torch.mul(x_1, x_2)
426
+ return x
427
+
428
+
429
+ class ModalityProjection(nn.Module):
430
+ def __init__(self, embed_dim_in, embed_dim_out) -> None:
431
+ super().__init__()
432
+ self.fc1 = nn.Linear(embed_dim_in, embed_dim_out, bias=False)
433
+ self.act = SwiGLU(embed_dim_out)
434
+ self.fc2 = nn.Linear(embed_dim_out, embed_dim_out, bias=False)
435
+
436
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
437
+ x = self.fc1(x)
438
+ x = self.act(x)
439
+ x = self.fc2(x)
440
+ return x
441
+
442
+
443
+ class PerceiverResampler(nn.Module):
444
+ def __init__(
445
+ self, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int, qk_layer_norms: bool
446
+ ) -> None:
447
+ """
448
+ Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
449
+ MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
450
+ returns a Tensor of shape [bsz, n_latents, embed_dim].
451
+ :param embed_dim: Dimensionality of embeddings being fed to the Perceiver Resampler (also dimensionality of
452
+ latent embeddings *returned* by the Perceiver Resampler. Could be e.g., VIT embed_dim, ResNet
453
+ pool dim, and so on.
454
+ :param depth: Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
455
+ :param n_heads: Number of heads in each Transformer block (for multi-headed self-attention).
456
+ :param head_dim: Dimensionality of each head projection in the Transformer block.
457
+ :param n_latents: Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
458
+ """
459
+ super().__init__()
460
+ self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
461
+ self.qk_layer_norms = qk_layer_norms
462
+
463
+ # Create Latents for Perceiver
464
+ self.latents = nn.Parameter(torch.ones(self.n_latents, self.embed_dim))
465
+
466
+ self.intermediate_dim = self.embed_dim * 4
467
+ # Create Transformer Blocks
468
+ self.blocks = nn.ModuleList(
469
+ [
470
+ nn.ModuleList(
471
+ [
472
+ PerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms),
473
+ MLP(self.embed_dim, self.intermediate_dim),
474
+ ]
475
+ )
476
+ for _ in range(depth)
477
+ ]
478
+ )
479
+ self.layer_norm = nn.LayerNorm(self.embed_dim)
480
+
481
+ def forward(self, context: torch.Tensor) -> torch.Tensor:
482
+ """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
483
+ latents = repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
484
+
485
+ # Feed through Perceiver Attention blocks...
486
+ for attn, ff in self.blocks:
487
+ latents = attn(context, latents) + latents
488
+ latents = ff(latents) + latents
489
+
490
+ return self.layer_norm(latents)
491
+
492
+
493
+ class PerceiverAttention(nn.Module):
494
+ def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None:
495
+ """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
496
+ super().__init__()
497
+ self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
498
+ self.qk_layer_norms = qk_layer_norms
499
+ # Normalization & Scaling
500
+ self.context_layer_norm = nn.LayerNorm(self.embed_dim)
501
+ self.latents_layer_norm = nn.LayerNorm(self.embed_dim)
502
+ if self.qk_layer_norms:
503
+ self.q_layer_norm = nn.LayerNorm(self.head_dim)
504
+ self.k_layer_norm = nn.LayerNorm(self.head_dim)
505
+
506
+ self.qk_scale = self.head_dim**-0.5
507
+
508
+ # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
509
+ self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
510
+ self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
511
+ self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
512
+
513
+ self.output_proj = nn.Linear(self.n_heads * self.head_dim, self.embed_dim, bias=False)
514
+
515
+ def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
516
+ """
517
+ Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
518
+ :param context: Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample.
519
+ :param latents: Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to.
520
+ :return: Tensor of shape [bsz, n_latents, embed_dim] representing attention over latents w/ cross from context.
521
+ """
522
+ context = self.context_layer_norm(context)
523
+ latents = self.latents_layer_norm(latents)
524
+
525
+ # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
526
+ # Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
527
+ q = self.q_proj(latents)
528
+ k = self.k_proj(torch.cat([context, latents], dim=-2))
529
+ v = self.v_proj(torch.cat([context, latents], dim=-2))
530
+
531
+ # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
532
+ # =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
533
+ q, k, v = [rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads) for x in (q, k, v)]
534
+ if self.qk_layer_norms:
535
+ q = self.q_layer_norm(q)
536
+ k = self.k_layer_norm(k)
537
+
538
+ scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
539
+ stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
540
+ attn = stabilized_scores.softmax(dim=-1)
541
+
542
+ # Attend & project back to output...
543
+ resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
544
+ return self.output_proj(
545
+ rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
546
+ )
547
+
548
+
549
+ class MLP(nn.Module):
550
+ def __init__(self, embed_dim, intermediate_size):
551
+ """Simple MLP block with intermediate_size and embedding size"""
552
+ super().__init__()
553
+ self.embed_dim = embed_dim
554
+ self.ln = nn.LayerNorm(self.embed_dim)
555
+ self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False)
556
+ self.act = nn.ReLU()
557
+ self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False)
558
+
559
+ def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
560
+ hidden_states = self.ln(hidden_states)
561
+ hidden_states = self.fc(hidden_states)
562
+ hidden_states = self.act(hidden_states)
563
+ hidden_states = self.c_proj(hidden_states)
564
+
565
+ return hidden_states
566
+
567
+
568
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
569
+ def _get_unpad_data(attention_mask):
570
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
571
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
572
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
573
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
574
+ return (
575
+ indices,
576
+ cu_seqlens,
577
+ max_seqlen_in_batch,
578
+ )
579
+
580
+
581
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
582
+ class MistralRMSNorm(nn.Module):
583
+ def __init__(self, hidden_size, eps=1e-6):
584
+ """
585
+ MistralRMSNorm is equivalent to T5LayerNorm
586
+ """
587
+ super().__init__()
588
+ self.weight = nn.Parameter(torch.ones(hidden_size))
589
+ self.variance_epsilon = eps
590
+
591
+ def forward(self, hidden_states):
592
+ input_dtype = hidden_states.dtype
593
+ hidden_states = hidden_states.to(torch.float32)
594
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
595
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
596
+ return self.weight * hidden_states.to(input_dtype)
597
+
598
+
599
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
600
+ class MistralRotaryEmbedding(nn.Module):
601
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
602
+ super().__init__()
603
+
604
+ self.dim = dim
605
+ self.max_position_embeddings = max_position_embeddings
606
+ self.base = base
607
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
608
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
609
+
610
+ # Build here to make `torch.jit.trace` work.
611
+ self._set_cos_sin_cache(
612
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
613
+ )
614
+
615
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
616
+ self.max_seq_len_cached = seq_len
617
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
618
+
619
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
620
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
621
+ emb = torch.cat((freqs, freqs), dim=-1)
622
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
623
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
624
+
625
+ def forward(self, x, seq_len=None):
626
+ # x: [bs, num_attention_heads, seq_len, head_size]
627
+ if seq_len > self.max_seq_len_cached:
628
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
629
+
630
+ return (
631
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
632
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
633
+ )
634
+
635
+
636
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
637
+ def rotate_half(x):
638
+ """Rotates half the hidden dims of the input."""
639
+ x1 = x[..., : x.shape[-1] // 2]
640
+ x2 = x[..., x.shape[-1] // 2 :]
641
+ return torch.cat((-x2, x1), dim=-1)
642
+
643
+
644
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
645
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
646
+ cos = cos[position_ids].unsqueeze(1) # [seq_len, dim] -> [batch_size, 1, seq_len, head_dim]
647
+ sin = sin[position_ids].unsqueeze(1)
648
+ q_embed = (q * cos) + (rotate_half(q) * sin)
649
+ k_embed = (k * cos) + (rotate_half(k) * sin)
650
+ return q_embed, k_embed
651
+
652
+
653
+ class MistralMLP(nn.Module):
654
+ def __init__(self, config):
655
+ super().__init__()
656
+ self.config = config
657
+ self.hidden_size = config.hidden_size
658
+ self.intermediate_size = config.intermediate_size
659
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
660
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
661
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
662
+ self.act_fn = ACT2FN[config.hidden_act]
663
+
664
+ def forward(self, x):
665
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
666
+
667
+
668
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
669
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
670
+ """
671
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
672
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
673
+ """
674
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
675
+ if n_rep == 1:
676
+ return hidden_states
677
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
678
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
679
+
680
+
681
+ class MistralAttention(nn.Module):
682
+ """
683
+ Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
684
+ and "Generating Long Sequences with Sparse Transformers".
685
+ """
686
+
687
+ def __init__(self, config: VMistralConfig, qk_layer_norms: bool = False):
688
+ super().__init__()
689
+ self.config = config
690
+ self.hidden_size = config.hidden_size
691
+ self.num_heads = config.num_attention_heads
692
+ self.head_dim = self.hidden_size // self.num_heads
693
+ self.num_key_value_heads = config.num_key_value_heads
694
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
695
+ self.max_position_embeddings = config.max_position_embeddings
696
+ self.rope_theta = config.rope_theta
697
+ self.is_causal = True
698
+
699
+ if (self.head_dim * self.num_heads) != self.hidden_size:
700
+ raise ValueError(
701
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
702
+ f" and `num_heads`: {self.num_heads})."
703
+ )
704
+
705
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
706
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
707
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
708
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
709
+
710
+ self.qk_layer_norms = qk_layer_norms
711
+ if self.qk_layer_norms:
712
+ self.q_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
713
+ self.k_layer_norm = MistralRMSNorm(self.head_dim, eps=config.rms_norm_eps)
714
+
715
+ self.rotary_emb = MistralRotaryEmbedding(
716
+ self.head_dim,
717
+ max_position_embeddings=self.max_position_embeddings,
718
+ base=self.rope_theta,
719
+ )
720
+ self.attention_dropout = config.attention_dropout
721
+
722
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
723
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
724
+
725
+ def forward(
726
+ self,
727
+ hidden_states: torch.Tensor,
728
+ key_value_states: Optional[torch.Tensor] = None,
729
+ attention_mask: Optional[torch.Tensor] = None,
730
+ position_ids: Optional[torch.LongTensor] = None,
731
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
732
+ output_attentions: bool = False,
733
+ use_cache: bool = False,
734
+ **kwargs,
735
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
736
+ if "padding_mask" in kwargs:
737
+ warnings.warn(
738
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
739
+ " `attention_mask` instead.`"
740
+ )
741
+
742
+ bsz, q_len, _ = hidden_states.size()
743
+
744
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
745
+ key_states = (
746
+ self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
747
+ )
748
+ value_states = (
749
+ self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
750
+ )
751
+
752
+ kv_seq_len = key_states.shape[-2]
753
+ if past_key_value is not None:
754
+ kv_seq_len += past_key_value[0].shape[-2]
755
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
756
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
757
+
758
+ if past_key_value is not None:
759
+ # reuse k, v, self_attention
760
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
761
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
762
+
763
+ past_key_value = (key_states, value_states) if use_cache else None
764
+
765
+ if self.qk_layer_norms:
766
+ query_states = self.q_layer_norm(query_states)
767
+ key_states = self.k_layer_norm(key_states)
768
+
769
+ # repeat k/v heads if n_kv_heads < n_heads
770
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
771
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
772
+
773
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
774
+
775
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
776
+ raise ValueError(
777
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
778
+ f" {attn_weights.size()}"
779
+ )
780
+
781
+ if attention_mask is not None:
782
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
783
+ raise ValueError(
784
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
785
+ )
786
+
787
+ attn_weights = attn_weights + attention_mask
788
+
789
+ # upcast attention to fp32
790
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
791
+ attn_output = torch.matmul(attn_weights, value_states)
792
+
793
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
794
+ raise ValueError(
795
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
796
+ f" {attn_output.size()}"
797
+ )
798
+
799
+ attn_output = attn_output.transpose(1, 2).contiguous()
800
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
801
+
802
+ attn_output = self.o_proj(attn_output)
803
+
804
+ if not output_attentions:
805
+ attn_weights = None
806
+
807
+ return attn_output, attn_weights, past_key_value
808
+
809
+
810
+ class MistralFlashAttention2(MistralAttention):
811
+ """
812
+ Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays
813
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
814
+ flash attention and deal with padding tokens in case the input contains any of them.
815
+ """
816
+
817
+ def forward(
818
+ self,
819
+ hidden_states: torch.Tensor,
820
+ attention_mask: Optional[torch.Tensor] = None,
821
+ position_ids: Optional[torch.LongTensor] = None,
822
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
823
+ output_attentions: bool = False,
824
+ use_cache: bool = False,
825
+ **kwargs,
826
+ ):
827
+ if "padding_mask" in kwargs:
828
+ warnings.warn(
829
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
830
+ " `attention_mask` instead.`"
831
+ )
832
+
833
+ # overwrite attention_mask with padding_mask
834
+ attention_mask = kwargs.pop("padding_mask")
835
+ bsz, q_len, _ = hidden_states.size()
836
+
837
+ query_states = self.q_proj(hidden_states)
838
+ key_states = self.k_proj(hidden_states)
839
+ value_states = self.v_proj(hidden_states)
840
+
841
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
842
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
843
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
844
+
845
+ kv_seq_len = key_states.shape[-2]
846
+ if past_key_value is not None:
847
+ kv_seq_len += past_key_value[0].shape[-2]
848
+
849
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
850
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
851
+ cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
852
+
853
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
854
+
855
+ use_sliding_windows = (
856
+ _flash_supports_window_size
857
+ and hasattr(self.config, "sliding_window") is not None
858
+ and kv_seq_len > self.config.sliding_window
859
+ )
860
+
861
+ if not _flash_supports_window_size:
862
+ logger.warning_once(
863
+ "The current flash attention version does not support sliding window attention, for a more memory"
864
+ " efficient implementation make sure to upgrade flash-attn library."
865
+ )
866
+
867
+ if past_key_value is not None:
868
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
869
+ if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window:
870
+ slicing_tokens = kv_seq_len - self.config.sliding_window
871
+
872
+ past_key = past_key_value[0]
873
+ past_value = past_key_value[1]
874
+
875
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
876
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
877
+
878
+ if past_key.shape[-2] != self.config.sliding_window - 1:
879
+ raise ValueError(
880
+ "past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1,"
881
+ f" head_dim`), got {past_key.shape}"
882
+ )
883
+
884
+ past_key_value = (past_key, past_value)
885
+
886
+ if attention_mask is not None:
887
+ attention_mask = attention_mask[:, slicing_tokens:]
888
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
889
+
890
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
891
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
892
+
893
+ past_key_value = (key_states, value_states) if use_cache else None
894
+
895
+ # repeat k/v heads if n_kv_heads < n_heads
896
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
897
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
898
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
899
+
900
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
901
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
902
+ # cast them back in float16 just to be sure everything works as expected.
903
+ input_dtype = query_states.dtype
904
+ if input_dtype == torch.float32:
905
+ # Handle the case where the model is quantized
906
+ if hasattr(self.config, "_pre_quantization_dtype"):
907
+ target_dtype = self.config._pre_quantization_dtype
908
+ else:
909
+ target_dtype = self.q_proj.weight.dtype
910
+
911
+ logger.warning_once(
912
+ "The input hidden states seems to be silently casted in float32, this might be related to the fact"
913
+ " you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
914
+ f" {target_dtype}."
915
+ )
916
+
917
+ query_states = query_states.to(target_dtype)
918
+ key_states = key_states.to(target_dtype)
919
+ value_states = value_states.to(target_dtype)
920
+
921
+ # Reashape to the expected shape for Flash Attention
922
+ query_states = query_states.transpose(1, 2)
923
+ key_states = key_states.transpose(1, 2)
924
+ value_states = value_states.transpose(1, 2)
925
+
926
+ attn_output = self._flash_attention_forward(
927
+ query_states,
928
+ key_states,
929
+ value_states,
930
+ attention_mask,
931
+ q_len,
932
+ dropout=dropout_rate,
933
+ use_sliding_windows=use_sliding_windows,
934
+ )
935
+
936
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
937
+ attn_output = self.o_proj(attn_output)
938
+
939
+ if not output_attentions:
940
+ attn_weights = None
941
+
942
+ return attn_output, attn_weights, past_key_value
943
+
944
+ def _flash_attention_forward(
945
+ self,
946
+ query_states,
947
+ key_states,
948
+ value_states,
949
+ attention_mask,
950
+ query_length,
951
+ dropout=0.0,
952
+ softmax_scale=None,
953
+ use_sliding_windows=False,
954
+ ):
955
+ """
956
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
957
+ first unpad the input, then computes the attention scores and pad the final attention scores.
958
+
959
+ Args:
960
+ query_states (`torch.Tensor`):
961
+ Input query states to be passed to Flash Attention API
962
+ key_states (`torch.Tensor`):
963
+ Input key states to be passed to Flash Attention API
964
+ value_states (`torch.Tensor`):
965
+ Input value states to be passed to Flash Attention API
966
+ attention_mask (`torch.Tensor`):
967
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
968
+ position of padding tokens and 1 for the position of non-padding tokens.
969
+ dropout (`int`, *optional*):
970
+ Attention dropout
971
+ softmax_scale (`float`, *optional*):
972
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
973
+ use_sliding_windows (`bool`, *optional*):
974
+ Whether to activate sliding window attention.
975
+ """
976
+ # Contains at least one padding token in the sequence
977
+ if attention_mask is not None:
978
+ batch_size = query_states.shape[0]
979
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
980
+ query_states, key_states, value_states, attention_mask, query_length
981
+ )
982
+
983
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
984
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
985
+
986
+ if not use_sliding_windows:
987
+ attn_output_unpad = flash_attn_varlen_func(
988
+ query_states,
989
+ key_states,
990
+ value_states,
991
+ cu_seqlens_q=cu_seqlens_q,
992
+ cu_seqlens_k=cu_seqlens_k,
993
+ max_seqlen_q=max_seqlen_in_batch_q,
994
+ max_seqlen_k=max_seqlen_in_batch_k,
995
+ dropout_p=dropout,
996
+ softmax_scale=softmax_scale,
997
+ causal=self.is_causal,
998
+ )
999
+ else:
1000
+ attn_output_unpad = flash_attn_varlen_func(
1001
+ query_states,
1002
+ key_states,
1003
+ value_states,
1004
+ cu_seqlens_q=cu_seqlens_q,
1005
+ cu_seqlens_k=cu_seqlens_k,
1006
+ max_seqlen_q=max_seqlen_in_batch_q,
1007
+ max_seqlen_k=max_seqlen_in_batch_k,
1008
+ dropout_p=dropout,
1009
+ softmax_scale=softmax_scale,
1010
+ causal=self.is_causal,
1011
+ window_size=(self.config.sliding_window, self.config.sliding_window),
1012
+ )
1013
+
1014
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
1015
+ else:
1016
+ if not use_sliding_windows:
1017
+ attn_output = flash_attn_func(
1018
+ query_states,
1019
+ key_states,
1020
+ value_states,
1021
+ dropout,
1022
+ softmax_scale=softmax_scale,
1023
+ causal=self.is_causal,
1024
+ )
1025
+ else:
1026
+ attn_output = flash_attn_func(
1027
+ query_states,
1028
+ key_states,
1029
+ value_states,
1030
+ dropout,
1031
+ softmax_scale=softmax_scale,
1032
+ causal=self.is_causal,
1033
+ window_size=(self.config.sliding_window, self.config.sliding_window),
1034
+ )
1035
+
1036
+ return attn_output
1037
+
1038
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
1039
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
1040
+
1041
+ # On the first iteration we need to properly re-create the padding mask
1042
+ # by slicing it on the proper place
1043
+ if kv_seq_len != attention_mask.shape[-1]:
1044
+ attention_mask_num_tokens = attention_mask.shape[-1]
1045
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
1046
+
1047
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1048
+
1049
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
1050
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
1051
+
1052
+ if query_length == kv_seq_len:
1053
+ query_layer = index_first_axis(
1054
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
1055
+ )
1056
+ cu_seqlens_q = cu_seqlens_k
1057
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1058
+ indices_q = indices_k
1059
+ elif query_length == 1:
1060
+ max_seqlen_in_batch_q = 1
1061
+ cu_seqlens_q = torch.arange(
1062
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1063
+ ) # There is a memcpy here, that is very bad.
1064
+ indices_q = cu_seqlens_q[:-1]
1065
+ query_layer = query_layer.squeeze(1)
1066
+ else:
1067
+ # The -q_len: slice assumes left padding.
1068
+ attention_mask = attention_mask[:, -query_length:]
1069
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
1070
+
1071
+ return (
1072
+ query_layer,
1073
+ key_layer,
1074
+ value_layer,
1075
+ indices_q,
1076
+ (cu_seqlens_q, cu_seqlens_k),
1077
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1078
+ )
1079
+
1080
+
1081
+ class MistralDecoderLayer(nn.Module):
1082
+ def __init__(self, config: VMistralConfig):
1083
+ super().__init__()
1084
+ self.hidden_size = config.hidden_size
1085
+ self.self_attn = (
1086
+ MistralAttention(config=config)
1087
+ if not getattr(config, "_flash_attn_2_enabled", False)
1088
+ else MistralFlashAttention2(config)
1089
+ )
1090
+ self.mlp = MistralMLP(config)
1091
+ self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1092
+ self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1093
+
1094
+ def forward(
1095
+ self,
1096
+ hidden_states: torch.Tensor,
1097
+ attention_mask: Optional[torch.Tensor] = None,
1098
+ position_ids: Optional[torch.LongTensor] = None,
1099
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1100
+ output_attentions: Optional[bool] = False,
1101
+ use_cache: Optional[bool] = False,
1102
+ **kwargs,
1103
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1104
+ if "padding_mask" in kwargs:
1105
+ warnings.warn(
1106
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use"
1107
+ " `attention_mask` instead.`"
1108
+ )
1109
+ """
1110
+ Args:
1111
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1112
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
1113
+ `(batch, sequence_length)` where padding elements are indicated by 0.
1114
+ output_attentions (`bool`, *optional*):
1115
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1116
+ returned tensors for more detail.
1117
+ use_cache (`bool`, *optional*):
1118
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1119
+ (see `past_key_values`).
1120
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1121
+ """
1122
+
1123
+ residual = hidden_states
1124
+
1125
+ hidden_states = self.input_layernorm(hidden_states)
1126
+
1127
+ # Self Attention
1128
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1129
+ hidden_states=hidden_states,
1130
+ attention_mask=attention_mask,
1131
+ position_ids=position_ids,
1132
+ past_key_value=past_key_value,
1133
+ output_attentions=output_attentions,
1134
+ use_cache=use_cache,
1135
+ )
1136
+ hidden_states = residual + hidden_states
1137
+
1138
+ # Fully Connected
1139
+ residual = hidden_states
1140
+ hidden_states = self.post_attention_layernorm(hidden_states)
1141
+ hidden_states = self.mlp(hidden_states)
1142
+ hidden_states = residual + hidden_states
1143
+
1144
+ outputs = (hidden_states,)
1145
+
1146
+ if output_attentions:
1147
+ outputs += (self_attn_weights,)
1148
+
1149
+ if use_cache:
1150
+ outputs += (present_key_value,)
1151
+
1152
+ return outputs
1153
+
1154
+
1155
+ MISTRAL_START_DOCSTRING = r"""
1156
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1157
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1158
+ etc.)
1159
+
1160
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1161
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1162
+ and behavior.
1163
+
1164
+ Parameters:
1165
+ config ([`VMistralConfig`]):
1166
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1167
+ load the weights associated with the model, only the configuration. Check out the
1168
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1169
+ """
1170
+
1171
+
1172
+ @add_start_docstrings(
1173
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
1174
+ MISTRAL_START_DOCSTRING,
1175
+ )
1176
+ class VMistralPreTrainedModel(PreTrainedModel):
1177
+ config_class = VMistralConfig
1178
+ base_model_prefix = "model"
1179
+ supports_gradient_checkpointing = True
1180
+ _no_split_modules = ["MistralDecoderLayer"]
1181
+ _skip_keys_device_placement = "past_key_values"
1182
+ _supports_sdpa = False
1183
+
1184
+ def _init_weights(self, module):
1185
+ # important: this ported version of the model isn't meant for training from scratch - only
1186
+ # inference and fine-tuning - so the proper init weights code has been removed - the m4 code
1187
+ # base should be used for training from scratch and it contains the correct code.
1188
+ std = self.config.initializer_range
1189
+ if isinstance(module, nn.Linear):
1190
+ module.weight.data.normal_(mean=0.0, std=std)
1191
+ if module.bias is not None:
1192
+ module.bias.data.zero_()
1193
+ elif isinstance(module, nn.Embedding):
1194
+ module.weight.data.normal_(mean=0.0, std=std)
1195
+ if module.padding_idx is not None:
1196
+ module.weight.data[module.padding_idx].zero_()
1197
+
1198
+ # @classmethod
1199
+ # def override_vision_model_wrapper(cls, model, config, vision_model_name, vision_model_params, torch_dtype):
1200
+ # # this can be called via from_pretrained from a class w/ head or w/o head so we extract the beheaded model version
1201
+ # beheaded_model = model.model if hasattr(model, "model") else model
1202
+ # cls.override_vision_model(beheaded_model, vision_model_name, vision_model_params, torch_dtype)
1203
+ # beheaded_model.freeze_relevant_params(config)
1204
+
1205
+
1206
+ MISTRAL_INPUTS_DOCSTRING = r"""
1207
+ Args:
1208
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1209
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1210
+ it.
1211
+
1212
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1213
+ [`PreTrainedTokenizer.__call__`] for details.
1214
+
1215
+ [What are input IDs?](../glossary#input-ids)
1216
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1217
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1218
+
1219
+ - 1 for tokens that are **not masked**,
1220
+ - 0 for tokens that are **masked**.
1221
+
1222
+ [What are attention masks?](../glossary#attention-mask)
1223
+
1224
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1225
+ [`PreTrainedTokenizer.__call__`] for details.
1226
+
1227
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
1228
+ `past_key_values`).
1229
+
1230
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1231
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1232
+ information on the default strategy.
1233
+
1234
+ - 1 indicates the head is **not masked**,
1235
+ - 0 indicates the head is **masked**.
1236
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1237
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1238
+ config.n_positions - 1]`.
1239
+
1240
+ [What are position IDs?](../glossary#position-ids)
1241
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1242
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
1243
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
1244
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
1245
+
1246
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1247
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1248
+
1249
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1250
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1251
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1252
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1253
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1254
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1255
+ model's internal embedding lookup matrix.
1256
+ use_cache (`bool`, *optional*):
1257
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1258
+ `past_key_values`).
1259
+ output_attentions (`bool`, *optional*):
1260
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1261
+ tensors for more detail.
1262
+ output_hidden_states (`bool`, *optional*):
1263
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1264
+ more detail.
1265
+ return_dict (`bool`, *optional*):
1266
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1267
+ """
1268
+
1269
+
1270
+ @add_start_docstrings(
1271
+ "The bare Mistral Model outputting raw hidden-states without any specific head on top.",
1272
+ MISTRAL_START_DOCSTRING,
1273
+ )
1274
+ class VMistralModel(VMistralPreTrainedModel):
1275
+ """
1276
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
1277
+
1278
+ Args:
1279
+ config: VMistralConfig
1280
+ """
1281
+
1282
+ def __init__(self, config: VMistralConfig, vision_model=None):
1283
+ super().__init__(config)
1284
+ self.config = config
1285
+ self.padding_idx = config.pad_token_id
1286
+ self.vocab_size = config.vocab_size
1287
+
1288
+ self.sliding_window = config.sliding_window
1289
+
1290
+ self.embed_tokens = DecoupledEmbedding(
1291
+ num_embeddings=config.vocab_size,
1292
+ num_additional_embeddings=config.additional_vocab_size,
1293
+ embedding_dim=config.hidden_size,
1294
+ partially_freeze=config.freeze_text_layers,
1295
+ padding_idx=self.padding_idx,
1296
+ )
1297
+
1298
+ # Load an uninitialized model and later in from_pretrained will load the pre-trained model -
1299
+ # this solves the losing of weights in `from_pretrained` on the main model
1300
+ self.vision_model = SiglipVisionModel(config.vision_config)
1301
+
1302
+ # Dim projection - projecting from the vision dim to the text dim
1303
+ self.modality_projection = ModalityProjection(
1304
+ embed_dim_in=self.config.vision_config.hidden_size, embed_dim_out=self.config.hidden_size
1305
+ )
1306
+
1307
+ # Perceiver Resampler
1308
+ if config.use_resampler:
1309
+ self.perceiver_resampler = PerceiverResampler(
1310
+ config.hidden_size,
1311
+ config.perceiver_config.resampler_depth,
1312
+ config.perceiver_config.resampler_n_heads,
1313
+ config.perceiver_config.resampler_head_dim,
1314
+ config.perceiver_config.resampler_n_latents,
1315
+ config.perceiver_config.qk_layer_norms_perceiver,
1316
+ )
1317
+
1318
+ if config.use_resampler:
1319
+ self.image_seq_len = config.perceiver_config.resampler_n_latents
1320
+ else:
1321
+ self.image_seq_len = (
1322
+ config.vision_config.image_size // config.vision_config.patch_size
1323
+ ) ** 2 # TODO: pretty sure that does not work for CLIP models since there is the CLS token
1324
+ self.image_token_id = self.config.image_token_id
1325
+
1326
+ self.layers = nn.ModuleList([MistralDecoderLayer(config) for _ in range(config.num_hidden_layers)])
1327
+
1328
+ self.gradient_checkpointing = False
1329
+
1330
+ self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1331
+
1332
+ # Initialize weights and apply final processing
1333
+ self.post_init()
1334
+
1335
+ self.freeze_relevant_params(config)
1336
+
1337
+ def freeze_relevant_params(self, config=None):
1338
+ if config is None:
1339
+ config = self.config
1340
+
1341
+ if config.freeze_text_layers:
1342
+ self.freeze_text_layers(config.freeze_text_module_exceptions)
1343
+
1344
+ if config.freeze_vision_layers:
1345
+ freeze_model(self.vision_model, module_exceptions=config.freeze_vision_module_exceptions)
1346
+
1347
+ def freeze_text_layers(self, module_exceptions):
1348
+ for module in [self.layers, self.norm]:
1349
+ freeze_model(module, module_exceptions=module_exceptions)
1350
+
1351
+ def get_input_embeddings(self):
1352
+ return self.embed_tokens
1353
+
1354
+ def set_input_embeddings(self, value):
1355
+ self.embed_tokens = value
1356
+
1357
+ def inputs_merger(
1358
+ self,
1359
+ input_ids: torch.LongTensor = None,
1360
+ inputs_embeds: Optional[torch.Tensor] = None,
1361
+ image_hidden_states: Optional[torch.Tensor] = None,
1362
+ ):
1363
+ """
1364
+ This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM.
1365
+ The merging happens as follows:
1366
+ - The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`.
1367
+ - We get the image hidden states for the image through the vision encoder (and potentially the perceiver), and that hidden state is then projected into the text embedding space.
1368
+ We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer.
1369
+ - The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM.
1370
+ - To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states.
1371
+ """
1372
+ batch_size = input_ids.size(0)
1373
+
1374
+ if inputs_embeds is not None:
1375
+ new_inputs_embeds = inputs_embeds.clone()
1376
+
1377
+ if image_hidden_states is not None:
1378
+ vision_pipeline_output_seq_len = image_hidden_states.shape[1]
1379
+ vision_hidden_size = image_hidden_states.shape[2]
1380
+ # Get the number of images for each example
1381
+ num_images = (input_ids == self.image_token_id).sum(dim=-1) // self.image_seq_len
1382
+ cum_num_images = num_images.cumsum(dim=-1)
1383
+ for batch_idx in range(batch_size):
1384
+ # Get the number of images for this particular example
1385
+ example_num_images = num_images[batch_idx]
1386
+ # Get the image_hidden_states corresponding to True images for the example, so get rid of the padding images.
1387
+ start = 0 if batch_idx == 0 else cum_num_images[batch_idx - 1]
1388
+ end = cum_num_images[batch_idx]
1389
+ example_true_image_hidden_states = image_hidden_states[start:end]
1390
+ if (
1391
+ new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]
1392
+ != example_num_images * vision_pipeline_output_seq_len
1393
+ ):
1394
+ raise ValueError(
1395
+ "new_inputs_embeds to replace has shape[0]:"
1396
+ f" {new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id].shape[0]} but"
1397
+ " should have shape[0]:"
1398
+ f" {example_num_images}*{vision_pipeline_output_seq_len}={example_num_images * vision_pipeline_output_seq_len} "
1399
+ )
1400
+ # Insert the image_hidden_states
1401
+ new_inputs_embeds[batch_idx][input_ids[batch_idx] == self.image_token_id] = (
1402
+ example_true_image_hidden_states.view(
1403
+ example_num_images * vision_pipeline_output_seq_len,
1404
+ vision_hidden_size,
1405
+ )
1406
+ )
1407
+
1408
+ return_dict = {}
1409
+ if inputs_embeds is not None:
1410
+ return_dict["inputs_embeds"] = new_inputs_embeds
1411
+
1412
+ return return_dict
1413
+
1414
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1415
+ def forward(
1416
+ self,
1417
+ input_ids: torch.LongTensor = None,
1418
+ attention_mask: Optional[torch.Tensor] = None,
1419
+ position_ids: Optional[torch.LongTensor] = None,
1420
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1421
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1422
+ pixel_values: Optional[torch.FloatTensor] = None,
1423
+ image_hidden_states: Optional[torch.FloatTensor] = None,
1424
+ use_cache: Optional[bool] = None,
1425
+ output_attentions: Optional[bool] = None,
1426
+ output_hidden_states: Optional[bool] = None,
1427
+ return_dict: Optional[bool] = None,
1428
+ ) -> Union[Tuple, VMistralBaseModelOutputWithPast]:
1429
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1430
+
1431
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1432
+ output_hidden_states = (
1433
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1434
+ )
1435
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1436
+
1437
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1438
+
1439
+ # retrieve input_ids and inputs_embeds
1440
+ if input_ids is not None and inputs_embeds is not None:
1441
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1442
+ elif input_ids is not None:
1443
+ batch_size, seq_length = input_ids.shape
1444
+ elif inputs_embeds is not None:
1445
+ batch_size, seq_length, _ = inputs_embeds.shape
1446
+ else:
1447
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1448
+
1449
+ seq_length_with_past = seq_length
1450
+ past_key_values_length = 0
1451
+
1452
+ if past_key_values is not None:
1453
+ past_key_values_length = past_key_values[0][0].shape[2]
1454
+ seq_length_with_past = seq_length_with_past + past_key_values_length
1455
+
1456
+ if position_ids is None:
1457
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1458
+ position_ids = torch.arange(
1459
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1460
+ )
1461
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1462
+ else:
1463
+ position_ids = position_ids.view(-1, seq_length).long()
1464
+
1465
+ if inputs_embeds is None:
1466
+ inputs_embeds = self.embed_tokens(input_ids)
1467
+
1468
+ # START VISUAL INPUTS INTEGRATION
1469
+ if pixel_values is not None and image_hidden_states is not None:
1470
+ raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
1471
+ elif pixel_values is not None:
1472
+ pixel_values = pixel_values.to(dtype=self.dtype, device=input_ids.device) # fp16 compatibility
1473
+ batch_size, num_images = pixel_values.size(0), pixel_values.size(1)
1474
+ pixel_values = pixel_values.contiguous().view(batch_size * num_images, *pixel_values.shape[2:])
1475
+ # Remove padding images - padding images are full 0.
1476
+ real_images_inds = pixel_values.sum(dim=(-1, -2, -3)) != 0.0
1477
+ pixel_values = pixel_values[real_images_inds]
1478
+ # Get sequence from the vision encoder
1479
+ image_hidden_states = self.vision_model(pixel_values=pixel_values).last_hidden_state
1480
+
1481
+ # Modality projection
1482
+ image_hidden_states = self.modality_projection(image_hidden_states)
1483
+
1484
+ if self.config.use_resampler:
1485
+ image_hidden_states = self.perceiver_resampler(image_hidden_states)
1486
+ elif image_hidden_states is not None:
1487
+ image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
1488
+
1489
+ if past_key_values is None:
1490
+ # When we generate, we don't want to replace the potential image_token_id that we generated by images
1491
+ # that simply don't exist
1492
+ new_inp = self.inputs_merger(
1493
+ input_ids=input_ids,
1494
+ inputs_embeds=inputs_embeds,
1495
+ image_hidden_states=image_hidden_states,
1496
+ )
1497
+ inputs_embeds = new_inp["inputs_embeds"]
1498
+
1499
+ # Can do add some token types embeddings here (image token vs text token)
1500
+ # something like inputs_embeds += self.token_types(token_types)
1501
+
1502
+ # embed positions
1503
+ if (
1504
+ attention_mask is not None
1505
+ and hasattr(self.config, "_flash_attn_2_enabled")
1506
+ and self.config._flash_attn_2_enabled
1507
+ and past_key_values is not None
1508
+ ):
1509
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1510
+ if is_padding_right:
1511
+ raise ValueError(
1512
+ "You are attempting to perform batched generation with padding_side='right'"
1513
+ " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
1514
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1515
+ )
1516
+
1517
+ if getattr(self.config, "_flash_attn_2_enabled", False):
1518
+ # 2d mask is passed through the layers
1519
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1520
+ else:
1521
+ # 4d mask is passed through the layers
1522
+ attention_mask = _prepare_4d_causal_attention_mask(
1523
+ attention_mask,
1524
+ (batch_size, seq_length),
1525
+ inputs_embeds,
1526
+ past_key_values_length,
1527
+ sliding_window=self.config.sliding_window,
1528
+ )
1529
+ attention_mask[attention_mask == -float("inf")] = torch.finfo(self.dtype).min
1530
+
1531
+ hidden_states = inputs_embeds
1532
+
1533
+ if self.gradient_checkpointing and self.training:
1534
+ if use_cache:
1535
+ logger.warning_once(
1536
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1537
+ )
1538
+ use_cache = False
1539
+
1540
+ # decoder layers
1541
+ all_hidden_states = () if output_hidden_states else None
1542
+ all_self_attns = () if output_attentions else None
1543
+ next_decoder_cache = () if use_cache else None
1544
+
1545
+ for idx, decoder_layer in enumerate(self.layers):
1546
+ if output_hidden_states:
1547
+ all_hidden_states += (hidden_states,)
1548
+
1549
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1550
+
1551
+ if self.gradient_checkpointing and self.training:
1552
+ layer_outputs = self._gradient_checkpointing_func(
1553
+ decoder_layer.__call__,
1554
+ hidden_states,
1555
+ attention_mask,
1556
+ position_ids,
1557
+ past_key_value,
1558
+ output_attentions,
1559
+ use_cache,
1560
+ )
1561
+ else:
1562
+ layer_outputs = decoder_layer(
1563
+ hidden_states,
1564
+ attention_mask=attention_mask,
1565
+ position_ids=position_ids,
1566
+ past_key_value=past_key_value,
1567
+ output_attentions=output_attentions,
1568
+ use_cache=use_cache,
1569
+ )
1570
+
1571
+ hidden_states = layer_outputs[0]
1572
+
1573
+ if use_cache:
1574
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1575
+
1576
+ if output_attentions:
1577
+ all_self_attns += (layer_outputs[1],)
1578
+
1579
+ hidden_states = self.norm(hidden_states)
1580
+
1581
+ # add hidden states from the last decoder layer
1582
+ if output_hidden_states:
1583
+ all_hidden_states += (hidden_states,)
1584
+
1585
+ next_cache = next_decoder_cache if use_cache else None
1586
+ if not return_dict:
1587
+ return tuple(
1588
+ v
1589
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, image_hidden_states]
1590
+ if v is not None
1591
+ )
1592
+ return VMistralBaseModelOutputWithPast(
1593
+ last_hidden_state=hidden_states,
1594
+ past_key_values=next_cache,
1595
+ hidden_states=all_hidden_states,
1596
+ attentions=all_self_attns,
1597
+ image_hidden_states=image_hidden_states,
1598
+ )
1599
+
1600
+
1601
+ class VMistralForVisionText2Text(VMistralPreTrainedModel):
1602
+ _tied_weights_keys = ["lm_head.weight"]
1603
+
1604
+ def __init__(self, config, vision_model=None):
1605
+ super().__init__(config)
1606
+ self.model = VMistralModel(config, vision_model=vision_model)
1607
+ self.image_token_id = self.config.image_token_id
1608
+ self.lm_head = DecoupledLinear(
1609
+ in_features=config.hidden_size,
1610
+ out_features=config.vocab_size,
1611
+ out_additional_features=config.additional_vocab_size,
1612
+ bias=False,
1613
+ partially_freeze=config.freeze_lm_head,
1614
+ )
1615
+
1616
+ # Initialize weights and apply final processing
1617
+ self.post_init()
1618
+
1619
+ def get_input_embeddings(self):
1620
+ return self.model.embed_tokens
1621
+
1622
+ def set_input_embeddings(self, value):
1623
+ self.model.embed_tokens = value
1624
+
1625
+ def get_output_embeddings(self):
1626
+ return self.lm_head
1627
+
1628
+ def set_output_embeddings(self, new_embeddings):
1629
+ self.lm_head = new_embeddings
1630
+
1631
+ def set_decoder(self, decoder):
1632
+ self.model = decoder
1633
+
1634
+ def get_decoder(self):
1635
+ return self.model
1636
+
1637
+ def tie_weights(self):
1638
+ """
1639
+ Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding.
1640
+ """
1641
+ output_embeddings = self.get_output_embeddings()
1642
+ input_embeddings = self.get_input_embeddings()
1643
+
1644
+ if getattr(self.config, "tie_word_embeddings", True):
1645
+ output_embeddings.weight = input_embeddings.weight
1646
+ if input_embeddings.num_additional_embeddings > 0:
1647
+ assert output_embeddings.out_additional_features == input_embeddings.num_additional_embeddings
1648
+ output_embeddings.additional_fc.weight = input_embeddings.additional_embedding.weight
1649
+
1650
+ if hasattr(output_embeddings, "out_features") and hasattr(input_embeddings, "num_embeddings"):
1651
+ output_embeddings.out_features = input_embeddings.num_embeddings
1652
+ if hasattr(output_embeddings, "out_additional_features") and hasattr(
1653
+ input_embeddings, "num_additional_embeddings"
1654
+ ):
1655
+ output_embeddings.out_additional_features = input_embeddings.num_additional_embeddings
1656
+
1657
+ @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
1658
+ @replace_return_docstrings(output_type=VMistralCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1659
+ def forward(
1660
+ self,
1661
+ input_ids: torch.LongTensor = None,
1662
+ attention_mask: Optional[torch.Tensor] = None,
1663
+ position_ids: Optional[torch.LongTensor] = None,
1664
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1665
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1666
+ pixel_values: Optional[torch.FloatTensor] = None,
1667
+ image_hidden_states: Optional[torch.FloatTensor] = None,
1668
+ labels: Optional[torch.LongTensor] = None,
1669
+ use_cache: Optional[bool] = None,
1670
+ output_attentions: Optional[bool] = None,
1671
+ output_hidden_states: Optional[bool] = None,
1672
+ return_dict: Optional[bool] = None,
1673
+ ) -> Union[Tuple, VMistralCausalLMOutputWithPast]:
1674
+ r"""
1675
+ Args:
1676
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1677
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1678
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1679
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1680
+
1681
+ Returns:
1682
+
1683
+ """
1684
+
1685
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1686
+ output_hidden_states = (
1687
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1688
+ )
1689
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1690
+
1691
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1692
+ outputs = self.model(
1693
+ input_ids=input_ids,
1694
+ attention_mask=attention_mask,
1695
+ position_ids=position_ids,
1696
+ past_key_values=past_key_values,
1697
+ inputs_embeds=inputs_embeds,
1698
+ pixel_values=pixel_values,
1699
+ image_hidden_states=image_hidden_states,
1700
+ use_cache=use_cache,
1701
+ output_attentions=output_attentions,
1702
+ output_hidden_states=output_hidden_states,
1703
+ return_dict=return_dict,
1704
+ )
1705
+
1706
+ hidden_states = outputs[0]
1707
+ logits = self.lm_head(hidden_states)
1708
+ logits = logits.float()
1709
+
1710
+ loss = None
1711
+ if labels is not None:
1712
+ labels = labels.to(logits.device)
1713
+ # Shift so that tokens < n predict n
1714
+ if attention_mask is not None:
1715
+ shift_attention_mask = attention_mask[..., 1:].to(logits.device)
1716
+ shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous()
1717
+ shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous()
1718
+ else:
1719
+ shift_logits = logits[..., :-1, :].contiguous()
1720
+ shift_labels = labels[..., 1:].contiguous()
1721
+ # Flatten the tokens
1722
+ loss_fct = CrossEntropyLoss(ignore_index=self.image_token_id)
1723
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
1724
+
1725
+ if not return_dict:
1726
+ output = (logits,) + outputs[1:]
1727
+ return (loss,) + output if loss is not None else output
1728
+
1729
+ return VMistralCausalLMOutputWithPast(
1730
+ loss=loss,
1731
+ logits=logits,
1732
+ past_key_values=outputs.past_key_values,
1733
+ hidden_states=outputs.hidden_states,
1734
+ attentions=outputs.attentions,
1735
+ image_hidden_states=outputs.image_hidden_states,
1736
+ )
1737
+
1738
+ def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
1739
+ image_hidden_states = kwargs.pop("image_hidden_states", None)
1740
+ if image_hidden_states is not None:
1741
+ kwargs["pixel_values"] = None
1742
+ inputs = prepare_inputs_for_generation(input_ids, past=past, **kwargs)
1743
+ unwanted_kwargs = ["token_type_ids"]
1744
+ for kwarg in unwanted_kwargs:
1745
+ inputs.pop(kwarg, None)
1746
+ return inputs
1747
+
1748
+ @staticmethod
1749
+ def _expand_inputs_for_generation(
1750
+ *args,
1751
+ **model_kwargs,
1752
+ ):
1753
+ return expand_inputs_for_generation(*args, **model_kwargs)
1754
+
1755
+ @staticmethod
1756
+ def _update_model_kwargs_for_generation(outputs, model_kwargs, is_encoder_decoder):
1757
+ return update_model_kwargs_for_generation(outputs, model_kwargs)
1758
+
1759
+ @staticmethod
1760
+ def _reorder_cache(past, beam_idx):
1761
+ reordered_past = ()
1762
+ for layer_past in past:
1763
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
1764
+ return reordered_past
preprocessor_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "IdeficsProcessor",
4
+ "AutoImageProcessor": "IdeficsImageProcessor"
5
+ },
6
+ "image_num_channels": 3,
7
+ "image_mean": [
8
+ 0.5,
9
+ 0.5,
10
+ 0.5
11
+ ],
12
+ "image_processor_type": "IdeficsImageProcessor",
13
+ "image_size": 960,
14
+ "image_std": [
15
+ 0.5,
16
+ 0.5,
17
+ 0.5
18
+ ],
19
+ "processor_class": "IdeficsProcessor"
20
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "32000": {
28
+ "content": "<fake_token_around_image>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "32001": {
36
+ "content": "<image>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "eos_token": "</s>",
48
+ "legacy": false,
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "pad_token": "<unk>",
51
+ "sp_model_kwargs": {},
52
+ "spaces_between_special_tokens": false,
53
+ "tokenizer_class": "LlamaTokenizer",
54
+ "unk_token": "<unk>",
55
+ "use_default_system_prompt": true
56
+ }
vision.py ADDED
@@ -0,0 +1,652 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 Google AI and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ A simplified copy of https://huggingface.co/HuggingFaceM4/siglip-so400m-14-384-flash-attn2 """
16
+
17
+
18
+ from dataclasses import dataclass
19
+ from typing import Any, Optional, Tuple, Union
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import torch.utils.checkpoint
24
+ from torch import nn
25
+ from transformers.activations import ACT2FN
26
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
27
+ from transformers.utils import (
28
+ ModelOutput,
29
+ is_flash_attn_2_available,
30
+ logging,)
31
+
32
+ from .configuration_vmistral import VMistralVisionConfig
33
+
34
+
35
+ logger = logging.get_logger(__name__)
36
+
37
+
38
+ if is_flash_attn_2_available():
39
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
40
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
41
+
42
+
43
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
44
+ def _get_unpad_data(attention_mask):
45
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
46
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
47
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
48
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
49
+ return (
50
+ indices,
51
+ cu_seqlens,
52
+ max_seqlen_in_batch,
53
+ )
54
+
55
+
56
+ @dataclass
57
+ # Copied from transformers.models.clip.modeling_clip.CLIPVisionModelOutput with CLIP->Siglip
58
+ class SiglipVisionModelOutput(ModelOutput):
59
+ """
60
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
61
+
62
+ Args:
63
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
64
+ The image embeddings obtained by applying the projection layer to the pooler_output.
65
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
66
+ Sequence of hidden-states at the output of the last layer of the model.
67
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
68
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
69
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
70
+
71
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
72
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
73
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
74
+ sequence_length)`.
75
+
76
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
77
+ heads.
78
+ """
79
+
80
+ image_embeds: Optional[torch.FloatTensor] = None
81
+ last_hidden_state: torch.FloatTensor = None
82
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
83
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
84
+
85
+
86
+ class SiglipVisionEmbeddings(nn.Module):
87
+ def __init__(self, config: VMistralVisionConfig):
88
+ super().__init__()
89
+ self.config = config
90
+ self.embed_dim = config.hidden_size
91
+ self.image_size = config.image_size
92
+ self.patch_size = config.patch_size
93
+
94
+ self.patch_embedding = nn.Conv2d(
95
+ in_channels=config.num_channels,
96
+ out_channels=self.embed_dim,
97
+ kernel_size=self.patch_size,
98
+ stride=self.patch_size,
99
+ padding="valid",
100
+ )
101
+
102
+ self.num_patches = (self.image_size // self.patch_size) ** 2
103
+ self.num_positions = self.num_patches
104
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
105
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
106
+
107
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
108
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
109
+ embeddings = patch_embeds.flatten(2).transpose(1, 2)
110
+
111
+ embeddings = embeddings + self.position_embedding(self.position_ids)
112
+ return embeddings
113
+
114
+
115
+ # Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Siglip
116
+ class SiglipAttention(nn.Module):
117
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
118
+
119
+ def __init__(self, config):
120
+ super().__init__()
121
+ self.config = config
122
+ self.embed_dim = config.hidden_size
123
+ self.num_heads = config.num_attention_heads
124
+ self.head_dim = self.embed_dim // self.num_heads
125
+ if self.head_dim * self.num_heads != self.embed_dim:
126
+ raise ValueError(
127
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
128
+ f" {self.num_heads})."
129
+ )
130
+ self.scale = self.head_dim**-0.5
131
+ self.dropout = config.attention_dropout
132
+
133
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
134
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
135
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
136
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
137
+
138
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
139
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
140
+
141
+ def forward(
142
+ self,
143
+ hidden_states: torch.Tensor,
144
+ attention_mask: Optional[torch.Tensor] = None,
145
+ causal_attention_mask: Optional[torch.Tensor] = None,
146
+ output_attentions: Optional[bool] = False,
147
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
148
+ """Input shape: Batch x Time x Channel"""
149
+
150
+ bsz, tgt_len, embed_dim = hidden_states.size()
151
+
152
+ # get query proj
153
+ query_states = self.q_proj(hidden_states) * self.scale
154
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
155
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
156
+
157
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
158
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
159
+ key_states = key_states.view(*proj_shape)
160
+ value_states = value_states.view(*proj_shape)
161
+
162
+ src_len = key_states.size(1)
163
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
164
+
165
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
166
+ raise ValueError(
167
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
168
+ f" {attn_weights.size()}"
169
+ )
170
+
171
+ # apply the causal_attention_mask first
172
+ if causal_attention_mask is not None:
173
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
174
+ raise ValueError(
175
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
176
+ f" {causal_attention_mask.size()}"
177
+ )
178
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
179
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
180
+
181
+ if attention_mask is not None:
182
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
183
+ raise ValueError(
184
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
185
+ )
186
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
187
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
188
+
189
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
190
+
191
+ if output_attentions:
192
+ # this operation is a bit akward, but it's required to
193
+ # make sure that attn_weights keeps its gradient.
194
+ # In order to do so, attn_weights have to reshaped
195
+ # twice and have to be reused in the following
196
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
197
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
198
+ else:
199
+ attn_weights_reshaped = None
200
+
201
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
202
+
203
+ attn_output = torch.bmm(attn_probs, value_states)
204
+
205
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
206
+ raise ValueError(
207
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
208
+ f" {attn_output.size()}"
209
+ )
210
+
211
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
212
+ attn_output = attn_output.transpose(1, 2)
213
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
214
+
215
+ attn_output = self.out_proj(attn_output)
216
+
217
+ return attn_output, attn_weights_reshaped
218
+
219
+
220
+ class SiglipFlashAttention2(SiglipAttention):
221
+ """
222
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
223
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
224
+ flash attention and deal with padding tokens in case the input contains any of them.
225
+ """
226
+
227
+ def __init__(self, *args, **kwargs):
228
+ super().__init__(*args, **kwargs)
229
+ self.is_causal = False # Hack to make sure we don't use a causal mask
230
+
231
+ def forward(
232
+ self,
233
+ hidden_states: torch.Tensor,
234
+ attention_mask: Optional[torch.LongTensor] = None,
235
+ position_ids: Optional[torch.LongTensor] = None,
236
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
237
+ output_attentions: bool = False,
238
+ use_cache: bool = False,
239
+ **kwargs,
240
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
241
+ output_attentions = False
242
+
243
+ bsz, q_len, _ = hidden_states.size()
244
+
245
+ query_states = self.q_proj(hidden_states)
246
+ key_states = self.k_proj(hidden_states)
247
+ value_states = self.v_proj(hidden_states)
248
+
249
+ # Flash attention requires the input to have the shape
250
+ # batch_size x seq_length x head_dim x hidden_dim
251
+ # therefore we just need to keep the original shape
252
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
253
+ key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
254
+ value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
255
+
256
+ kv_seq_len = key_states.shape[-2]
257
+ if past_key_value is not None:
258
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
259
+ # cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
260
+ # query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
261
+
262
+ # if past_key_value is not None:
263
+ # cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
264
+ # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
265
+
266
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
267
+ # to be able to avoid many of these transpose/reshape/view.
268
+ query_states = query_states.transpose(1, 2)
269
+ key_states = key_states.transpose(1, 2)
270
+ value_states = value_states.transpose(1, 2)
271
+
272
+ dropout_rate = self.dropout if self.training else 0.0
273
+
274
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
275
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
276
+ # cast them back in the correct dtype just to be sure everything works as expected.
277
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
278
+ # in fp32. (LlamaRMSNorm handles it correctly)
279
+
280
+ input_dtype = query_states.dtype
281
+ if input_dtype == torch.float32:
282
+ if torch.is_autocast_enabled():
283
+ target_dtype = torch.get_autocast_gpu_dtype()
284
+ # Handle the case where the model is quantized
285
+ elif hasattr(self.config, "_pre_quantization_dtype"):
286
+ target_dtype = self.config._pre_quantization_dtype
287
+ else:
288
+ target_dtype = self.q_proj.weight.dtype
289
+
290
+ logger.warning_once(
291
+ "The input hidden states seems to be silently casted in float32, this might be related to the fact"
292
+ " you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
293
+ f" {target_dtype}."
294
+ )
295
+
296
+ query_states = query_states.to(target_dtype)
297
+ key_states = key_states.to(target_dtype)
298
+ value_states = value_states.to(target_dtype)
299
+
300
+ attn_output = self._flash_attention_forward(
301
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
302
+ )
303
+
304
+ attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
305
+ attn_output = self.out_proj(attn_output)
306
+
307
+ if not output_attentions:
308
+ attn_weights = None
309
+
310
+ return attn_output, attn_weights
311
+
312
+ def _flash_attention_forward(
313
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
314
+ ):
315
+ """
316
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
317
+ first unpad the input, then computes the attention scores and pad the final attention scores.
318
+
319
+ Args:
320
+ query_states (`torch.Tensor`):
321
+ Input query states to be passed to Flash Attention API
322
+ key_states (`torch.Tensor`):
323
+ Input key states to be passed to Flash Attention API
324
+ value_states (`torch.Tensor`):
325
+ Input value states to be passed to Flash Attention API
326
+ attention_mask (`torch.Tensor`):
327
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
328
+ position of padding tokens and 1 for the position of non-padding tokens.
329
+ dropout (`int`, *optional*):
330
+ Attention dropout
331
+ softmax_scale (`float`, *optional*):
332
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
333
+ """
334
+
335
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
336
+ causal = self.is_causal and query_length != 1
337
+
338
+ # Contains at least one padding token in the sequence
339
+ if attention_mask is not None:
340
+ batch_size = query_states.shape[0]
341
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
342
+ query_states, key_states, value_states, attention_mask, query_length
343
+ )
344
+
345
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
346
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
347
+
348
+ attn_output_unpad = flash_attn_varlen_func(
349
+ query_states,
350
+ key_states,
351
+ value_states,
352
+ cu_seqlens_q=cu_seqlens_q,
353
+ cu_seqlens_k=cu_seqlens_k,
354
+ max_seqlen_q=max_seqlen_in_batch_q,
355
+ max_seqlen_k=max_seqlen_in_batch_k,
356
+ dropout_p=dropout,
357
+ softmax_scale=softmax_scale,
358
+ causal=causal,
359
+ )
360
+
361
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
362
+ else:
363
+ attn_output = flash_attn_func(
364
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
365
+ )
366
+
367
+ return attn_output
368
+
369
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
370
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
371
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
372
+
373
+ key_layer = index_first_axis(
374
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
375
+ )
376
+ value_layer = index_first_axis(
377
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
378
+ )
379
+ if query_length == kv_seq_len:
380
+ query_layer = index_first_axis(
381
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
382
+ )
383
+ cu_seqlens_q = cu_seqlens_k
384
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
385
+ indices_q = indices_k
386
+ elif query_length == 1:
387
+ max_seqlen_in_batch_q = 1
388
+ cu_seqlens_q = torch.arange(
389
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
390
+ ) # There is a memcpy here, that is very bad.
391
+ indices_q = cu_seqlens_q[:-1]
392
+ query_layer = query_layer.squeeze(1)
393
+ else:
394
+ # The -q_len: slice assumes left padding.
395
+ attention_mask = attention_mask[:, -query_length:]
396
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
397
+
398
+ return (
399
+ query_layer,
400
+ key_layer,
401
+ value_layer,
402
+ indices_q,
403
+ (cu_seqlens_q, cu_seqlens_k),
404
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
405
+ )
406
+
407
+
408
+ # Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Siglip
409
+ class SiglipMLP(nn.Module):
410
+ def __init__(self, config):
411
+ super().__init__()
412
+ self.config = config
413
+ self.activation_fn = ACT2FN[config.hidden_act]
414
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
415
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
416
+
417
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
418
+ hidden_states = self.fc1(hidden_states)
419
+ hidden_states = self.activation_fn(hidden_states)
420
+ hidden_states = self.fc2(hidden_states)
421
+ return hidden_states
422
+
423
+
424
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Siglip
425
+ class SiglipEncoderLayer(nn.Module):
426
+ def __init__(self, config: VMistralVisionConfig):
427
+ super().__init__()
428
+ self.embed_dim = config.hidden_size
429
+ self.self_attn = (
430
+ SiglipAttention(config)
431
+ if not getattr(config, "_flash_attn_2_enabled", False)
432
+ else SiglipFlashAttention2(config)
433
+ )
434
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
435
+ self.mlp = SiglipMLP(config)
436
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
437
+
438
+ def forward(
439
+ self,
440
+ hidden_states: torch.Tensor,
441
+ attention_mask: torch.Tensor,
442
+ causal_attention_mask: torch.Tensor,
443
+ output_attentions: Optional[bool] = False,
444
+ ) -> Tuple[torch.FloatTensor]:
445
+ """
446
+ Args:
447
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
448
+ attention_mask (`torch.FloatTensor`): attention mask of size
449
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
450
+ `(config.encoder_attention_heads,)`.
451
+ output_attentions (`bool`, *optional*):
452
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
453
+ returned tensors for more detail.
454
+ """
455
+ residual = hidden_states
456
+
457
+ hidden_states = self.layer_norm1(hidden_states)
458
+ hidden_states, attn_weights = self.self_attn(
459
+ hidden_states=hidden_states,
460
+ attention_mask=attention_mask,
461
+ causal_attention_mask=causal_attention_mask,
462
+ output_attentions=output_attentions,
463
+ )
464
+ hidden_states = residual + hidden_states
465
+
466
+ residual = hidden_states
467
+ hidden_states = self.layer_norm2(hidden_states)
468
+ hidden_states = self.mlp(hidden_states)
469
+ hidden_states = residual + hidden_states
470
+
471
+ outputs = (hidden_states,)
472
+
473
+ if output_attentions:
474
+ outputs += (attn_weights,)
475
+
476
+ return outputs
477
+
478
+
479
+ # Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Siglip
480
+ class SiglipEncoder(nn.Module):
481
+ """
482
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
483
+ [`SiglipEncoderLayer`].
484
+
485
+ Args:
486
+ config: SiglipConfig
487
+ """
488
+
489
+ def __init__(self, config):
490
+ super().__init__()
491
+ self.config = config
492
+ self.layers = nn.ModuleList([SiglipEncoderLayer(config) for _ in range(config.num_hidden_layers)])
493
+ self.gradient_checkpointing = False
494
+
495
+ def forward(
496
+ self,
497
+ inputs_embeds,
498
+ attention_mask: Optional[torch.Tensor] = None,
499
+ causal_attention_mask: Optional[torch.Tensor] = None,
500
+ output_attentions: Optional[bool] = None,
501
+ output_hidden_states: Optional[bool] = None,
502
+ return_dict: Optional[bool] = None,
503
+ ) -> Union[Tuple, BaseModelOutput]:
504
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
505
+ output_hidden_states = (
506
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
507
+ )
508
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
509
+
510
+ encoder_states = () if output_hidden_states else None
511
+ all_attentions = () if output_attentions else None
512
+
513
+ hidden_states = inputs_embeds
514
+ for idx, encoder_layer in enumerate(self.layers):
515
+ if output_hidden_states:
516
+ encoder_states = encoder_states + (hidden_states,)
517
+ if self.gradient_checkpointing and self.training:
518
+
519
+ def create_custom_forward(module):
520
+ def custom_forward(*inputs):
521
+ return module(*inputs, output_attentions)
522
+
523
+ return custom_forward
524
+
525
+ layer_outputs = torch.utils.checkpoint.checkpoint(
526
+ create_custom_forward(encoder_layer),
527
+ hidden_states,
528
+ attention_mask,
529
+ causal_attention_mask,
530
+ )
531
+ else:
532
+ layer_outputs = encoder_layer(
533
+ hidden_states,
534
+ attention_mask,
535
+ causal_attention_mask,
536
+ output_attentions=output_attentions,
537
+ )
538
+
539
+ hidden_states = layer_outputs[0]
540
+
541
+ if output_attentions:
542
+ all_attentions = all_attentions + (layer_outputs[1],)
543
+
544
+ if output_hidden_states:
545
+ encoder_states = encoder_states + (hidden_states,)
546
+
547
+ if not return_dict:
548
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
549
+ return BaseModelOutput(
550
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
551
+ )
552
+
553
+
554
+ class SiglipVisionTransformer(nn.Module):
555
+ def __init__(self, config: VMistralVisionConfig):
556
+ super().__init__()
557
+ self.config = config
558
+ embed_dim = config.hidden_size
559
+
560
+ self.embeddings = SiglipVisionEmbeddings(config)
561
+ self.encoder = SiglipEncoder(config)
562
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
563
+ self.head = SiglipMultiheadAttentionPoolingHead(config)
564
+
565
+ def forward(
566
+ self,
567
+ pixel_values,
568
+ output_attentions: Optional[bool] = None,
569
+ output_hidden_states: Optional[bool] = None,
570
+ return_dict: Optional[bool] = None,
571
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
572
+ r"""
573
+ Returns:
574
+
575
+ """
576
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
577
+ output_hidden_states = (
578
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
579
+ )
580
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
581
+
582
+ hidden_states = self.embeddings(pixel_values)
583
+
584
+ encoder_outputs = self.encoder(
585
+ inputs_embeds=hidden_states,
586
+ output_attentions=output_attentions,
587
+ output_hidden_states=output_hidden_states,
588
+ return_dict=return_dict,
589
+ )
590
+
591
+ last_hidden_state = encoder_outputs[0]
592
+ last_hidden_state = self.post_layernorm(last_hidden_state)
593
+
594
+ pooled_output = self.head(last_hidden_state)
595
+
596
+ if not return_dict:
597
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
598
+
599
+ return BaseModelOutputWithPooling(
600
+ last_hidden_state=last_hidden_state,
601
+ pooler_output=pooled_output,
602
+ hidden_states=encoder_outputs.hidden_states,
603
+ attentions=encoder_outputs.attentions,
604
+ )
605
+
606
+
607
+ class SiglipMultiheadAttentionPoolingHead(nn.Module):
608
+ """Multihead Attention Pooling."""
609
+
610
+ def __init__(self, config: VMistralVisionConfig):
611
+ super().__init__()
612
+
613
+ self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
614
+ self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True)
615
+ self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
616
+ self.mlp = SiglipMLP(config)
617
+
618
+ def forward(self, hidden_state):
619
+ batch_size = hidden_state.shape[0]
620
+ probe = self.probe.repeat(batch_size, 1, 1)
621
+
622
+ hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
623
+
624
+ residual = hidden_state
625
+ hidden_state = self.layernorm(hidden_state)
626
+ hidden_state = residual + self.mlp(hidden_state)
627
+
628
+ return hidden_state[:, 0]
629
+
630
+
631
+ class SiglipVisionModel(nn.Module):
632
+ def __init__(self, config: VMistralVisionConfig):
633
+ super().__init__()
634
+
635
+ self.config = config
636
+ self.vision_model = SiglipVisionTransformer(config)
637
+
638
+ def forward(
639
+ self,
640
+ pixel_values,
641
+ output_attentions: Optional[bool] = None,
642
+ output_hidden_states: Optional[bool] = None,
643
+ return_dict: Optional[bool] = None,
644
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
645
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
646
+
647
+ return self.vision_model(
648
+ pixel_values=pixel_values,
649
+ output_attentions=output_attentions,
650
+ output_hidden_states=output_hidden_states,
651
+ return_dict=return_dict,
652
+ )